The given rational function has a vertical asymptote at x=4 and a horizontal asymptote at y=3
Therefore, as x approaches infinity, y approaches 3 and as x approaches 4, y approaches infinity
Therefore, the function can be defined as
\(f(x)=\frac{3x}{x-4}\)?????????? WHAT ??????????
Answer:
Side of the square (a) = 3½ = 7/2 m
Area of the square
= a²
= (7/2)²
= 49/4
= 12.25 m²
Hope it helps ⚜
H(p)=p/5 + 15
What is the independent variable in this function
In the given function H(p) = p/5 + 15, the independent variable is "p" ,
The independent variable in this function is denoted by "p." The independent variable can also be referred to as the input variable, which means that it is the value that is inputted into the function to produce an output. In this specific function, "p" represents the price of a good or service.
It is important to distinguish between the independent and dependent variables in a function. The dependent variable is denoted by "H(p)" in this case, and it is the output of the function. The value of the dependent variable is determined by the independent variable. In this function, "H(p)" represents the total cost of the good or service, which is dependent on the price "p." p is the input variable representing the price of the good or service.
For such more questions on variable
https://brainly.com/question/28248724
#SPJ8
write an equation that you can use to slove for x enter your answer in the box
The value of angle x is 133 degree
And the equation of line be of the form,
⇒ y - y₁ = 133(x - x₁)
In the given line,
one angle is of 47 degree
And other is x degree
To find the value of x,
Since we know that,
The angle of line is 180 degree.
Therefore,
⇒ x + 47 = 180
⇒ x = 133 degree
Therefore slope of this line be 133 degree
Now let this line is passing through (x₁, y₁)
Hence,
The equation of line be,
⇒ y - y₁ = (slope)(x - x₁)
⇒ y - y₁ = 133(x - x₁)
Learn more about the equation of line visit:
https://brainly.com/question/18831322
#SPJ1
Black & Decker Manufacturing sold a set of saws to True Value Hardware. The list price was $3,800. Black & Decker offered a chain discount of 8/3/1. The net price of the saws is:
The net price of the saws that Black & Decker Manufacturing sold to True Value Hardware on a chain discount of 8/3/1 is $3,357.21.
What is a chain discount?A chain discount refers to a type of discount offered to customers, which is sequentially applied to the list price to arrive at the net price.
Chain discounts involve a series of trade discounts applied in sequence.
Data and Calculations:List price = $3,800
Chain discount = 8/3/1
First net price = $3,496 ($3,800 x 1 - 8%)
Second net price = $3,391.12 ($3,496 x 1 - 3%)
Third net price = $3,357.21 ($3,391.12 x 1 - 1%)
Thus, the net price based on a chain discount of 8/3/1 is $3,357.21.
Learn more about chain discounts at https://brainly.com/question/1515915
#SPJ1
Below are two graphs that show the same data. Graph A is drawn with a break in the vertical axis. Graph B is drawn without the break. Graph A A bar graph titled U S Endangered Species has Group on the x-axis, and number of species on the y-axis, from 50 to 85 in increments of 5. Mammals, 56; Birds, 75; Fish, 70. Graph B A bar graph titled U S Endangered Species has Group on the x-axis, and number of species on the y-axis, from 0 to 80 in increments of 10. Mammals, 56; Birds, 75; Fish, 70. Describe the effect the change in scale has on what the graph suggests. a. On graph B, the group of birds seems to have twice as much as the group of mammals. b. The differences between the groups seems much less in Graph A. c. The differences between the groups seems much less in Graph B. d. On graph A, the group of mammals seems to have one-quarter as much as the group of fish.
On graph B, the group of birds seems to have twice as much as the group of mammals.
The change in scale on the y-axis from 50 to 85 in increments of 5 in Graph A to 0 to 80 in increments of 10 in Graph B makes the differences between the groups appear larger in Graph B.
As a result, the height of the bar for birds is approximately twice as much as the height of the bar for mammals in Graph B, which may not be apparent in Graph A.
Therefore, the correct option is (a) On graph B, the group of birds seems to have twice as much as the group of mammals.
Learn more about Graph here:
https://brainly.com/question/17267403
#SPJ1
What is the greatest common factor of 14 and28
Answer:
7
Step-by-step explanation:
2*7=144*7=28Common factor = 7Answer:
7
Step-by-step explanation:
The greatest common factor is the largest number that goes into both numbers. In this case, that is 7.
A triangle has an angle that measures 10°. The other two angles are in a ratio of 3:14. What
are the measures of those two angles?
Step-by-step explanation:
Need to FinD :We have to find the measures of other two angles of triangle.\( \red{\frak{Given}} \begin{cases} & \sf{The\ measure\ of\ one\ angle\ of\ traingle\ is\ {\pmb{\sf{10^{\circ}}}}.} \\ & \sf{The\ other\ two\ angles\ are\ in\ the\ ratio\ of\ {\pmb{\sf{3\ :\ 14}}}.} \end{cases}\)
We know that,
The other two angles of triangle are in the ratio of 3 : 14. So, let us consider the other two angles of the triangle be 3x and 14x.Angle sum property,
The angle sum property of triangle states that the sum of interior angles of triangle is 180°. By using this property, we'll find the other two angles of the triangle.\(\rule{200}{3}\)
\( \sf \dashrightarrow {10^{\circ}\ +\ 3x\ +\ 14x\ =\ 180^{\circ}} \\ \\ \\ \sf \dashrightarrow {10^{\circ}\ +\ 17x\ =\ 180^{\circ}} \\ \\ \\ \sf \dashrightarrow {17x\ =\ 180^{\circ}\ -\ 10^{\circ}} \\ \\ \\ \sf \dashrightarrow {17x\ =\ 170^{\circ}} \\ \\ \\ \sf \dashrightarrow {x\ =\ \dfrac{\cancel{170^{\circ}}}{\cancel{17}}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{x\ =\ 10^{\circ}.}}}}_{\sf \blue {\tiny{Value\ of\ x}}}} \)
∴ Hence, the value of x is 10°. Now, let us find out the other two angles of the triangle.
\(\rule{200}{3}\)
Second AnglE :
3x3 × 1030°∴ Hence, the measure of the second angle of triangle is 30°. Now, let us find out the third angle of triangle.
\(\rule{200}{3}\)
Third AnglE :
14x 14 × 10140°∴ Hence, the measure of the third angle of the triangle is 140°.
Consider a circle whose equation is x2 + y2 – 2x – 8 = 0. Which statements are true? Select three options. The radius of the circle is 3 units. The center of the circle lies on the x-axis. The center of the circle lies on the y-axis. The standard form of the equation is (x – 1)² + y² = 3. The radius of this circle is the same as the radius of the circle whose equation is x² + y² = 9.
Answer:
Step-by-step explanation:
Helpppppopoopppppppppppp
Simply expression
Please show steps
Answer:
3(x + 5y) - 2(x + y)
3x + 15y - 2x - 2y
x + 13y
(3x + 15y) + (-2x + -2y)
x + 13y
Test II Solve the given equations using the method of Extracting the square roots. Show your solution(5 points each)
1. x²=16
2. (x-4)²=169
3. 4 x²-225=0
The quadratic functions x² = 16, (x - 4)² = 169 and 4x² - 225 = 0 have solutions 4, (17 or -9) and (7.5 or -7.5) respectively.
Quadratic EquationsA quadratic equation is an algebraic equation of the second degree in x. The quadratic equation in its standard form is ax² + bx + c = 0, where a and b are the coefficients, x is the variable, and c is the constant term. The first condition for an equation to be a quadratic equation is the coefficient of x² is a non-zero term(a ≠ 0). For writing a quadratic equation in standard form, the x² term is written first, followed by the x term, and finally, the constant term is written. The numeric values of a, b, c are generally not written as fractions or decimals but are written as integral values.
In the first function;
1. x² = 16
take the square roots of both sides;
x = √16
x = 4
2. (x - 4)² = 169
Open the bracket
x² - 8x + 16 = 169
Solving for x
x = 17 or x = - 9
3. 4x² - 225 = 0
4x² = 225
x = 7.5 or x = -7.5
Learn more on quadratic equations here;
https://brainly.com/question/1214333
#SPJ1
Guillermo just purchased a house for $625,000. His annual homeowner’s insurance premium is $0.52 per $100 of value. If his annual premium is divided into equal monthly payments, what will Guillermo have to pay on a monthly basis to keep his home insu
The amount which Guillermo will have to pay on a monthly basis to keep his home insurance is; $270.83
Insurance premiumFrom the information given;
His annual homeowner’s insurance premium is $0.52 per $100 of value.In essence, his annual home owner insurance premium is 0.52% of the house value and can be evaluated as follows;
0.52% of $625,000 = $3,250.Therefore, his annual premium is set at $3,250.
However, we are required to determine what will Guillermo have to pay on a monthly basis.
Therefore, we have; $3,250 spread equally over 12 months.
Therefore, we have; $3,250/12 = $270.83
Read more on insurance premium;
https://brainly.com/question/9696972
The amount that Guillermo will pay monthly to keep his home insurance is $270.83.
What is an insurance premium?An insurance premium is a charge that the insurer demands from the insured periodically as part of the pooling of risks under an insurance contract.
Data and Calculations:House value = $625,000
Insurance premium rate = $0.52 per $100
Annual premium = $3,250 ($625,000 x $0.52/$100)
Monthly premium = $270.83 ($3,250/12)
Thus, the amount that Guillermo will pay monthly to keep his home insurance is $270.83.
Learn more about insurance premiums at https://brainly.com/question/25280754
Ghana van company invested P45 700 for two years at a rate of 12%per annum compounded for quarter year. Work out the compound interest over the two years
\(~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$45700\\ r=rate\to 12\%\to \frac{12}{100}\dotfill &0.12\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\dotfill &4\\ t=years\dotfill &2 \end{cases}\)
\(A = 45700\left(1+\frac{0.12}{4}\right)^{4\cdot 2}\implies A=45700(1.03)^8 \implies A \approx 57891.39 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{earned interest}}{57891.39~~ - ~~45700} ~~ \approx ~~ \text{\LARGE 12191.39}\)
Question 3 A 44-metres long fire-fighting ladder is leaned against a building, as shown in the diagram. The base of the ladder is 7 metres from the building and 3 metres above the ground. How high on the building will the ladder reach?
The ladder will reach a Height of approximately 43.46 meters on the building.
To find out how high on the building the ladder will reach, we can use the Pythagorean theorem. The Pythagorean theorem states that in a right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
In this case, the ladder forms a right triangle with the ground and the building. The base of the ladder is 7 meters, the height of the building is what we need to find, and the length of the ladder is given as 44 meters.
Using the Pythagorean theorem, we can set up the equation:
(Height of the building)^2 + 7^2 = 44^2
Simplifying the equation, we have:
(Height of the building)^2 + 49 = 1936
Subtracting 49 from both sides, we get:
(Height of the building)^2 = 1887
To find the height of the building, we take the square root of both sides:
Height of the building = √1887
Calculating the square root of 1887, we find that the height of the building is approximately 43.46 meters.
Therefore, the ladder will reach a height of approximately 43.46 meters on the building.
For more questions on Height .
https://brainly.com/question/73194
#SPJ8
(a) Find the dimensions of a box with a square base with volume 125 and the minimal surface area. (Use symbolic notation and fractions where needed.) side of base: height: minimal surface area: (b) Find the dimensions of a box with a square base with surface area 44 and the maximal volume. (Use symbolic notation and fractions where needed.) Apply Newton's Method to f(x) and initial guess xo to calculate x1, x2, x3. f(x) = x3 – 12, xo = 2 (Give your answers to six decimal places.) XI X2 X3
The minimal surface area box has the following measurements: side of base = 5√2/2, height = 5√2, and minimal surface area = 25√2 + 50.
(a) Let x be the side of the square base and y be the height of the box. Then the volume of the box is given by V = x²y = 125, and the surface area is given by S = 2x² + 4xy. We want to minimize S subject to the constraint that V is fixed at 125.
Using the volume equation, we can solve for y in terms of x: y = 125/x². Substituting this expression for y into the surface area equation, we get S(x) = 2x² + 4x(125/x²) = 2x² + 500/x.
To minimize S(x), we take the derivative with respect to x and set it equal to zero:
S'(x) = 4x - 500/x² = 0
Solving for x, we get x = 5√2/2. Substituting this value into the expression for y, we get y = 5√2.
Therefore, the dimensions of the box with minimal surface area are: side of base = 5√2/2, height = 5√2, and minimal surface area = 25√2 + 50.
(b) Let x be the side of the square base and y be the height of the box. Then the surface area of the box is given by S = 2x² + 4xy = 44, and we want to maximize the volume V = x²y.
Using the surface area equation, we can solve for y in terms of x: y = (44 - 2x²)/4x. Substituting this expression for y into the volume equation, we get V(x) = x²(44 - 2x²)/4x = (11x² - x⁴/2).
To maximize V(x), we take the derivative with respect to x and set it equal to zero:
V'(x) = 22x - 2x³/2 = 0
Solving for x, we get x = √11. Substituting this value into the expression for y, we get y = (√11 - √2)²/2.
Therefore, the dimensions of the box with maximal volume are: side of base = √11, height = (√11 - √2)^²/2, and maximal volume = 11(√11 - √2)²/4.
(c) Using Newton's Method, we can approximate the root of f(x) = x³ - 12 starting with an initial guess of x₀ = 2:
x₁ = x₀ - f(x₀)/f'(x₀) = 2 - (2₃ - 12)/(32₂) = 1.833333
x₂ = x₁ - f(x₁)/f'(x₁) = 1.833333 - (1.833333³ - 12)/(31.833333²) = 2.005917
x₃ = x₂ - f(x₂)/f'(x₂) = 2.005917 - (2.005917³ - 12)/(3*2.005917²) = 2.000007
Therefore, the approximated root of f(x) = x³ - 12 using Newton's Method with an initial guess of 2 is x₃ = 2.000007.
To learn more about surface area refer to:
brainly.com/question/29298005
#SPJ4
Two bonds are available on the market as follows: Bond 1: Face value $250, 5 years to maturity at a simple interest rate of 5%. Bond 2: Face value $350, 3 years to maturity at a simple interest rate of r. Given that both bonds yield the same interest at maturity, calculate r. Round your answer to the nearest hundredth of a percent. Do NOT round until you have calculated your final answer.
Answer:
5.95%
Step-by-step explanation:
Bond 1:
I = 250(.05)5
I = $62.50
Bond 2:
62.5 = 350(3)r
62.5 = 1050r
r = 62.5/1050
r = 5.95%
Answer:
5.95%
Step-by-step explanation:
Kate bought $23.40 worth of two types of bird seed. Thistle bird seed sells for $1.60 per pound and wild bird seed sells for $0.95 per pound. If she bought 12 pounds of wild bird seed, write and solve a linear equation to find the amount of thistle bird seed she purchased.
Answer:
Ax+By=C and 7.5 lb of Thistle
Step-by-step explanation:
Carns Company is considering eliminating its Small Tools Division, which reported a loss for the prior year of $205,000 as shown below. Segment Income (Loss) Sales $ 1,430,000 Variable costs 1,295,000 Contribution margin 135,000 Fixed costs 340,000 Income (loss) $ (205,000) If the Small Tools Division is dropped, all of its variable costs are avoidable, and $119,000 of its fixed costs are avoidable. The impact on Carns’s income from eliminating the Small Tools Division would be: Multiple Choice
The impact on Carns Company's income from eliminating the Small Tools Division would be a decrease of $1,209,000.
To determine the impact on Carns Company's income from eliminating the Small Tools Division, we need to consider the avoidable costs associated with the division.
The avoidable costs include all of the variable costs of the division and a portion of the fixed costs that are specifically related to the Small Tools Division. In this case, the variable costs of the division are $1,295,000, and $119,000 of the fixed costs are avoidable.
To calculate the impact on income, we subtract the avoidable costs from the loss reported by the division:
Impact on income = Loss - Avoidable costs
Impact on income = $205,000 - ($1,295,000 + $119,000)
Impact on income = $205,000 - $1,414,000
Impact on income = -$1,209,000
The negative sign indicates a decrease in income.
For more such questions on income
https://brainly.com/question/28414951
#SPJ8
Find the volume of cone pictured below. Use 3.14 for π
.
Round your answer to the nearest hundredth.
Answer:
V≈718.38
Step-by-step explanation:
The volume of this cone is 718.38 cubic centimeters.
Have a nice day!
Find the angle between v = 2i - j and w = 3i + 4jRound nearest tenth of a degree
Answer:
\(\theta=79.7^{\circ}\)
Step-by-step explanation:
Given that,
v = 2i - j and w = 3i + 4j
We need to find the angle between v and w.
Magnitude of |v|, \(|v|=\sqrt{2^2+(-1)^2} =\sqrt5\)
Magnitude of |w|, \(|w|=\sqrt{3^2+4^2} =5\)
The dot product of v and w,
\(u{\cdot}w=2(3)+(-1)4\\\\=2\)
The formula for the dot product is given by :
\(u{\cdot}w=|u||w|\cos\theta\\\\\cos\theta=\dfrac{u{\cdot}w}{|u||w|}\\\\=\dfrac{2}{\sqrt5\times 5}\\\\\theta=\cos^{-1}(\dfrac{2}{\sqrt5\times 5})\\\\\theta=79.69^{\circ}\\\\=79.7^{\circ}\)
So, the angle between u and v is \(79.7^{\circ}\).
Answer:
The angle between two vectors
\(\alpha = cos^{-1} (\frac{2}{5\sqrt{5} } )\)
∝ = 79.700°
Step-by-step explanation:
Explanation
Given V = 2i - j and w = 3 i + 4 j
Let '∝' be the angle between the two vectors
\(cos \alpha = \frac{v^{-} .w^{-} }{|v||w|}\)
\(cos \alpha = \frac{(2i-j).(3i+4j) }{\sqrt{2^{2}+1^{2} )\sqrt{3^{2} +4^{2} } } }\)
\(cos \alpha = \frac{(2(3)-4(1) }{\sqrt{5 )\sqrt{25 } } } = \frac{2}{\sqrt{5})5 } = \frac{2}{5\sqrt{5} }\)
\(cos\alpha = \frac{2}{5\sqrt{5} } \\\alpha = cos^{-1} (\frac{2}{5\sqrt{5} } )\)
The angle between two vectors
∝ = 79.77°
Match the following equations with their direction field. Clicking on each picture will give you an enlarged view. While you can probably solve this problem by guessing, it is useful to try to predict characteristics of the direction field and then match them to the picture. Here are some handy characteristics to start with -- you will develop more as you practice.
A. Setyequal to zero and look at how the derivative behaves along thex-axis.
B. Do the same for they-axis by settingxequal to0
C. Consider the curve in the plane defined by settingy'=0-- this should correspond to the points in the picture where the slope is zero.
D. Settingy'equal to a constant other than zero gives the curve of points where the slope is that constant. These are called isoclines, and can be used to construct the direction field picture by hand.
1.y'= e^{-x} + 2y
2.y'= 2\sin(x) + 1 + y
3.\displaystyle y'= -\frac{(2x+y)}{(2y)}
4.y'= y + 2
sps3-Q-stmarys-ca-Q-edu-1991-sethw4-7pro sps3-Q-stmarys-ca-Q-edu-1991-sethw4-7pro
A B
sps3-Q-stmarys-ca-Q-edu-1991-sethw4-7pro sps3-Q-stmarys-ca-Q-edu-1991-sethw4-7pro
C D
My answers are correct I just need someone to show me the work on how to get there
The option (b) set y equal to a constant other than zero to get the curve of points where the slope is that constant.
A slope field is a visual representation of the slopes of a function's derivative at different points on the xy-plane. The slope at a particular point in the xy-plane is given by the derivative of the function at that point.
To match the given equations with their corresponding slope fields, you need to analyze the behavior of the slopes and isoclines. An isocline is a curve in the plane along which the slope of a function is constant. Isoclines are useful in constructing slope fields by hand, as they help in determining the slope at different points.
To start with, set y equal to zero and observe how the derivative behaves along the x-axis. Similarly, set x equal to zero and observe the behavior of the derivative along the y-axis. These observations will give you an idea of the direction and magnitude of the slope at different points in the xy-plane.
Next, consider the curve in the plane defined by setting y' = 0. This curve represents the points in the picture where the slope is zero. These points are known as critical points or equilibrium points. They are essential in analyzing the stability and behavior of a system.
These curves are called isoclines and can be used to construct the slope field picture by hand.
To know more about slope here.
https://brainly.com/question/3605446
#SPJ4
Complete Question:
Match the following equations with their slope field. Clicking on each picture will give you an enlarged view. While you can probably sove this problem by guessing, it is useful to try to predict characteristics of the slope field and then match them to the picture Here are some handy characteristics to start with- you will develop more as you practice. Set y equal to zero and look at how the derivatiwe behaves along the x axis. Do the same for the y axis by setting x equal to 0. Consider the curve in the plane defined by setting y' = 0-this should correspond to the points in the picture where the slope is zero. Setting y equal to a constant other than zero gives the curve of points where the slepe is that constant. These are called isoclines, and can be used to construct the slope field picture by hand.
fraction that is equivalent to 3/9 and has a denominator of 3."
, The fraction equivalent to 3/9 with denominator 3 is the proper fraction p=1/3
What is a fraction in math?A fraction is a part of a whole. In arithmetic, the number is expressed as a quotient, in which the numerator is divided by the denominator. In a simple fraction, both are integers. A complex fraction has a fraction in the numerator or denominator. In a proper fraction, the numerator is less than the denominator.
Given here: The fraction 3/9
Now we can simplify the fraction further by dividing both the numerator and denominator by 3
let p=3/9
then p=3/3 / 9/3
p= 1/3
Hence, The fraction equivalent to 3/9 with denominator 3 is the proper fraction p=1/3
Learn more about fractions here:
https://brainly.com/question/29264210
#SPJ1
evaluate a^2-b^4 if a= -1/2 and b=2. Express your answer in simplest form.
The difference between the given expression is -255/16
Functions and valuesFunctions are written in terms of variable. For instance y = f(x) is a function of y.
Given the expression below
a^2-b^4
Given the following parameters
a= -1/2 and b=2.
Substitute the given parameters to have:
(-1/2)^2 - 2^4
Expand the resulting expression to have:
(1/16) - 16
(1-256)/16
-255/16
Hence the difference between the given expression is -255/16
Learn more on difference of function here: https://brainly.com/question/17431959
#SPJ1
Use the method of cylindrical shells to write out an integral formula for the volume of the solid generated by rotating the region bounded by the curve y = 2x - x^2 and the line y = x about the y-axis.
Answer:
The answer is "\(\frac{5\pi}{6}\)"
Step-by-step explanation:
Please find the graph file.
\(h= y=2x-x^2\\\\r= x\\\\Area=2\pi\times r\times h\\\\= 2 \pi \times x \times (2x-x^2)\\\\= 2 \pi \times 2x^2-x^3\\\\volume \ V(x)=\int \ A(x)\ dx\\\\= \int^{x=1}_{x=0} 2\pi (2x^2-x^3)\ dx\\\\= 2\pi [(\frac{2x^3}{3}-\frac{x^4}{4})]^{1}_{0} \\\\= 2\pi [(\frac{2}{3}-\frac{1}{4})-(0-0)] \\\\= 2\pi \times \frac{5}{12}\\\\=\frac{5\pi}{6}\\\\\)
help me please! will mark brainliest
Answer:The function is linear because we are dealing with a straight line.
Step-by-step explanation:
How long is a distance of 8 km if measured on a map with a scale of 1:50,000?
Answer: 400,00 km
Step-by-step explanation: 1:50,000 = 8:x
8 * 50,000 = 400,000
So, 8km on the map is 400,000 km in real life.
Would appreciate brainly <3
Which of the following is the equation of the line that is perpendicular to y = - 4x - 5 and goes through the point (-2, 3)?
O y = - 4x-5
Oy = 4x + 11
O y = x + 1/
O y = -x + 1/
Answer:
\(y=\dfrac{1}{4}x+\dfrac{7}{2}\)
Step-by-step explanation:
Given equation:
\(y=-4x-5\)
If two lines are perpendicular to each other, their slopes are negative reciprocals.
The slope of the given equation is -4.
Therefore, the slope of the perpendicular line is ¹/₄.
\(\boxed{\begin{minipage}{5.8 cm}\underline{Point-slope form of a linear equation}\\\\$y-y_1=m(x-x_1)$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $(x_1,y_1)$ is a point on the line.\\\end{minipage}}\)
Substitute the found slope and point (-2, 3) into the point-slope formula to create the equation of the perpendicular line.
\(\implies y-3=\dfrac{1}{4}(x-(-2))\)
\(\implies y-3=\dfrac{1}{4}(x+2)\)
\(\implies y-3=\dfrac{1}{4}x+\dfrac{1}{2}\)
\(\implies y=\dfrac{1}{4}x+\dfrac{7}{2}\)
PLEASE HELP!!!!!
A beach toy in the shape of a pyramid has a rectangular base with dimensions of 4 inches by 12 inches. The height of the rectangular pyramid is 10 inches. Sand fills half the volume of the beach toy. How many more cubic inches of sand is needed to finish filling the beach toy? Enter your answer in the box. ____in3
Answer:
80in3
Step-by-step explanation:
12 x 4 = 48
48 / 2 = 24
24 x 10 =240
240 / 3 = 80
So your answer is 80in3
Answer: 80in
Step-by-step explanation:
express 350 as a product of prime factors
Answer:
2^1 × 5^2 × 7^1 = 350
Step-by-step explanation:
2, 5, 7 are prime
first step is to divide the number 350 with the prime factor 2
continue dividing the number 175 by the next smallest prime factor
stop until you can't divide anymore
https://www.cuemath.com/numbers/factors-of-350/
2. Identify the variables that are contained in the expression.
2m2 + 3mn + 4p
Answer:
m, n and p
Step-by-step explanation:
Given
\(2m^2 + 3mn + 4p\)
Required
List out the variables
Literally, the variables are the alphabets in the expression
And they are:
m, n and p