Answer:
Graph 2
Explanation:
The required polynomial is to have the following properties:
• Three distinct zeros
,• Two zeros with a multiplicity of 2
,• A negative leading coefficient
,• A degree of 5.
For the polynomial to satisfy the first two conditions, it must intersect the x-axis at exactly three points and touch the x-axis at a point.
For the polynomial, to satisfy the last two conditions, we use the leading coefficient test.
By one of the conditions of the leading coefficient test: When the degree is odd and the leading coefficient is negative, the graph rises to the left and falls to the right.
The graph that satisfies all these condition is attached below:
The second graph is the correct one.
Find the remainder when x³-3x²+3x
- is divided by i) x+1
Answer:
Step-by-step explanation:
Hope this helps u!!
describe the error below
plz hurry I make you brainlist
Answer:
Instead of subtracting 5 from both sides you would need to add because the equation is technically saying 5y - 5 = 10.
look at the photo and help quickly please
Answer:
E. 3/4
Step-by-step explanation:
it/1/lesson/3
W (3)=
=
Coursework EdgeXL
months after birth is
Progress Wall
The function W (m) = 1.1m +8.6 models the average weight of a female Infant, in pounds, from birth to
two years, where m is the number of months since birth.
Complete the statement.
11.9 can be interpreted to mean that the average weight of an infant
pounds.
<☆
Menu -
11.9 can be interpreted to mean that the average weight of an infant in 3 months
Given W(m)= 1.1m +8.6
Asked to complete the following statement: 11.9 can be interpreted to mean that an infant's average weight is
According to given question, w(m) = 11.9
11.9 = 1.1m +8.6
11.9 - 8.6=1.1m
3.3 = 1.1m
m=3
Therefore, in 3 months, 11.9 can be interpreted to mean the average weight of an infant.
Hence,11.9 can be interpreted to mean that the average weight of an infant in 3 months.
Learn more about average weight here:
https://brainly.com/question/28215339
#SPJ9
Find the slope of this line: (15,7) (3,-2)
Help
Answer:
\(m=\frac{3}{4}\)
Step-by-step explanation:
\(\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}\)
\(\left(x_1,\:y_1\right)=\left(15,\:7\right),\:\left(x_2,\:y_2\right)=\left(3,\:-2\right)\)
\(m=\frac{-2-7}{3-15}\)
\(\mathrm{Refine}\)
\(m=\frac{3}{4}\)
Representing a Graph with a Slope-Intercept Equation
-5-4-3-2
5
4
3
2
+
2345
y
2 3 4
X
5
A function f(x) is graphed.
What is the slope of the function?
m
What is the y-intercept of the function?
b = v
Which equation represents the graph of the function?
Answer:
1.) The slope is 2
2.) The y-intercept is (0,1)
3.) y = 2x + 1
Step-by-step explanation:
1.) you can either use rise over run or the slope formula. rise over run is quicker, but here's the formula:
you can use any two points on the line, i chose (2, 5) and (1, 3)
\(\frac{(y_{2}-y_{1})}{(x_{2}-x_{1})} \\\)
\(\frac{3-5}{1-2} \\\\\frac{-2}{-1} \\\\\frac{2}{1} \\\\2\)
2.) for the y-intercept, you just look for the point where the graph crosses the y-axis and x = 0
3.) using the formula y = mx + b, m being the slope and b being the y-intercept, you take the information above and plug it in to get y = 2x + 1
i hope this helped!
5. Oshaunda buys a car that costs $21,000. It depreciates at 8.2% per year. a. Write an equation for the value of the car. V=21,000(1-0.082) V-21,000(0.918) B. Oshaunda tries to sell the car 4 years later. What is the car worth when it is 4 years old? Hint: Use your formula for part (a), and plug in t = 4. Use GEMA to finish the math.
Answer:
a.
\(f(t) = 21000( {.918}^{t} )\)
b.
\(f(4) = 21000( {.918}^{4}) = 14913.86\)
A high school drama club is performing a musical to benefit a local charity. Tickets are $5. They also receive donations if $500. They wants to raise at least $2000. How many tickets should they sell to reach their target
Answer: 300 tickets
Step-by-step explanation:
The drama club wants to raise at least $2,000. They have already received donations of $500 so the amount left till target is:
= 2,000 - 500
= $1,500
Tickets are being sold at $5 so the number of tickets needed to get to $1,500 is:
= 1,500/5
= 300 tickets
4.7 is 10 percent of what number?
Answer:
47
Step-by-step explanation:
I’ll mark you brainlist I’ll mark you brainlist write in y=mx+b form
Answer:
y=-4x+2
hope this helped
To use the two sample t procedure to perform a significance test on the difference of two means, we assume:
We assume that the population standard deviation are known, the samples from each population are independent, the population is normally distributed if we use t test of two samples.
Given T test of significance has been used.
T test is a statistical test that is like z test. Z test is used when n>30 and t test is used when n<30. It is used in hypothesis testing.
We know that there are many test which can be used to test a hypothesis.
The requirements to perform a two sample t procedure are as follows:
1)The two samples have equal variance. Hence the variance should be known.
2) The samples for which the two sample t procedure is performed must be independent.
3) The data are in alignment with the normal distribution probability.
4) The sample are random samples taken from different respective population.
Hence when two sample t procedure is performed we have to assume population standard deviation is known and population is normally distributed.
Learn more about T test at https://brainly.com/question/6589776
#SPJ4
Hello 100 point Question with Explaining please
3x(1 – 2x) = 16 in standard form of a quadratic equation
The standard form expression of the equation as given in the task content is; 6x² -3x +16 = 0.
What is the standard form of the quadratic equation as given in the task content?According to the task content above;
It follows that to write the equation in the standard form; ax² +bx +c= 0.
One must expand and rewrite the equation as follows;
3x -6x² = 16
6x² -3x +16 = 0.
Read more on quadratic equation;
https://brainly.com/question/25841119
#SPJ4
a train traveled at an average speed of 45 miles per hour for 40 minutes, and at an average speed of 60 miles per hour for 1 hour. what was the average speed of the train, in miles per hour, for the trip?
So, the average speed of the train is 54.09 miles per hour.
To calculate the average speed of the train for the entire trip, you need to find the total distance traveled and the total time traveled.
First, you can convert the time traveled at each speed to hours. 40 minutes is equal to 40/60=0.67 hours. So the total time traveled is 1+0.67=1.67 hours.
To find the total distance traveled, you can use the formula: distance = speed x time. At 45 mph, the distance traveled is 45 x 0.67 = 30.15 miles. At 60 mph, the distance traveled is 60 x 1 = 60 miles. Therefore, the total distance traveled is 30.15 + 60 = 90.15 miles.
Finally, you can use the formula: average speed = total distance / total time.
Average speed = 90.15 miles / 1.67 hours = 54.09 miles per hour.
To learn more about Average Speed
Visit; brainly.com/question/12322912
#SPJ4
I appreciate this a bunch :))
Answer:
b = 72
Step-by-step explanation:
7/12b - 19 = 23
7/12b = 42
b = 72
Let's Check
7/12(72) - 19 = 23
42 - 19 = 23
23 = 23
So, b = 72 is the correct answer.
each element in the compounds has electron configuration similar to the nearest noble gas atom. indicate the correct noble gas in the space provided.
Answer:
Step-by-step explanation:
Nick is currently on page 40 of a book. He plans to read 10 pages per day. What is the initial value? What is the rate of change?
Answer:
Initial value: 40. Rate of change: 10
Step-by-step explanation:
You start out with 40 (Initial value) and you'd add 10 (Rate of change) to it everyday.
There are 20 consecutive even numbers. How much bigger is the sum of the larger 10 ones than the sum of the smaller ones?
A baseball team won 20 games and lost 10 games. What percent of the games did the team win?
A. 333%
B. 50%
C.663%
D.200%
Answer:
c
Step-by-step explanation:
The indicated function y1(x) is a solution of the given differential equation. Use reduction of order or the formula y2=y1(x)∫e−∫P(x)dxy12(x)dx, as instructed, to find a second solution y2(x). y" + 2y' + y = 0 ; y1=xe−x
A) y2 =e^{-4x}
B) y2 =e^x
C) y2 =e^{-2x}
D) y2 =e^{-x}
To find a second solution, y2(x), for the given differential equation y" + 2y' + y = 0 using the reduction of order or the formula y2 = y1(x)∫e^(-∫P(x)dx)y1^2(x)dx, we will substitute the given solution y1(x) = xe^(-x) into the formula.
The second solution is y2(x) = e^(-2x) (Option C).
To explain the solution, let's start by substituting y1(x) = xe^(-x) into the formula for y2(x):
y2(x) = xe^(-x) ∫e^(-∫(2x)dx)(xe^(-x))^2dx
Simplifying the expression, we have:
y2(x) = xe^(-x) ∫e^(-2x)(x^2e^(-2x))dx
Integrating the expression inside the integral, we get:
y2(x) = xe^(-x) ∫(x^2e^(-4x))dx
Integrating this expression, we find:
y2(x) = xe^(-x) (-1/4) * (x^2e^(-4x) - 2∫xe^(-4x)dx)
Simplifying further, we have:
y2(x) = xe^(-x) (-1/4) * (x^2e^(-4x) - 2(-1/4)e^(-4x))
Finally, simplifying the expression, we obtain:
y2(x) = xe^(-x) (1/4) * (x^2e^(-4x) + (1/2)e^(-4x))
This can be further simplified as:
y2(x) = (1/4) * x^3e^(-5x) + (1/8) * xe^(-5x)
Therefore, the second solution is y2(x) = e^(-2x) (Option C).
To learn more about differential click here:
brainly.com/question/31383100
#SPJ11
Find the missing number.
330 =
22
Submit
Answer:
15
Step-by-step explanation:
David invested $230 in a savings account that offers a 3% return on the investment. The value of David’s investment will be at least $415 after a period of ___ years.
20 years is the answer.
\(\text{A = R}(1+\text{r})^\text{t}\)
\(\text{A}=415\)
\(\text{R}=230\)
\(\text{r}=3\%\)
\(415=230 \ (1+3\%)^ t\)
\(\text{t = log}1.03 \ \ \ \dfrac{315}{230}\)
t=19.89 (use calculator)
David will invest at least 20 years.
What is an investment?An investment is a dedication of an asset to achieve an increase in value over a period of time. Investing requires the sacrifice of current assets such as time, money and effort. In finance, the purpose of an investment is to generate a profit on the invested asset
The most common example of an investment type. Investment is generally what you want to use in the future with the aim of generating regular cash flow or increasing the value of something over time so that you can sell it at a higher price than you purchased.
Learn about unitary method here: https://brainly.com/question/22056199
Consider the function
f(x,y) = y\sqrt x - y^2 - 3 x + 11 y.
Find and classify all critical points of the function. If there are more blanks than critical points, leave the remaining entries blank.
f_x =
f_y = f_{xx} = f_{xy} = f_{yy} = The critical point with the smallestx-coordinate is
(__,__) Classification:
(local minimum, local maximum, saddle point, cannot be determined)
The critical point with the next smallestx-coordinate is
(__,__) Classification:
(local minimum, local maximum, saddle point, cannot be determined)
The critical point with the next smallestx-coordinate is
(__,__) Classification:
(local minimum, local maximum, saddle point, cannot be determined)
By using the concept of maxima, it can be determined that
\(f_x(x, y) = \frac{y}{2\sqrt{x}} - 3\)
\(f_y(x, y) = \sqrt{x} - 2y +11\)
\(f_{xx}(x, y) = -\frac{1}{4}x^{-\frac{3}{2}}\)
\(f_{yy} = -2\)
\(f_{xy} = \frac{1}{2\sqrt{x}}\)
Critical point with the smallest x - coordinate
(0, \(\frac{11}{2}\))
Classification cannot be determined
Critical point with the next smallest x - coordinate
(1, 6)
Classification is local maxima
What is maxima of a function?
Maxima of a function gives the maximum value of a function in a given interval or within the whole domain.
f(x, y) = \(y\sqrt{x} -y^2 -3x + 11y\)
\(f_x(x, y) = \frac{y}{2\sqrt{x}} - 3\)
\(f_y(x, y) = \sqrt{x} - 2y +11\)
Putting x = 0 in \(f_y(x, y) = 0\),
-2y + 11 = 0
\(y = \frac{11}{2}\)
\((0, \frac{11}{2})\) is a critical point
Putting \(f_x(x, y) = 0\) and \(f_y(x, y) = 0\)
\(\frac{y}{2\sqrt{x}} - 3 = 0\\\frac{y}{2\sqrt{x}} = 3\\y = 6\sqrt{x}\)
\(\sqrt{x} - 2y+11 = 0\\\sqrt{x} -2\times 6\sqrt{x}+11=0\\\sqrt{x}-12\sqrt{x} + 11 = 0\\11\sqrt{x} = 11\\\sqrt{x} = \frac{11}{11}\\\sqrt{x} = 1\\x = 1\)
When x = 1, y = \(6 \times \sqrt{1} = 6\)
(1, 6) is a critical point
\(f_{xx}(x, y) = -\frac{1}{4}x^{-\frac{3}{2}}\)
\(f_{yy} = -2\)
\(f_{xy} = \frac{1}{2\sqrt{x}}\)
The point (0, \(\frac{11}{2}\)) is undefined in the second order partial derivative
For the critical point (1, 6)
\(f_{xx}(1, 6) = -\frac{1}{4}\\f_{yy}(1, 6) = -2\\f_{xy}(1, 6) = \frac{1}{2}\)
\(f_{xx}f_{yy}-(f_{xy})^2\)
\(-\frac{1}{4}\times -2-(\frac{1}{2})^2\\\frac{1}{2} - \frac{1}{4}\\\frac{1}{4} > 0\)
\(f_{yy} = -2 < 0\)
Hence (1, 6) is a point of local maxima
So it can be determined that
\(f_x(x, y) = \frac{y}{2\sqrt{x}} - 3\)
\(f_y(x, y) = \sqrt{x} - 2y +11\)
\(f_{xx}(x, y) = -\frac{1}{4}x^{-\frac{3}{2}}\)
\(f_{yy} = -2\)
\(f_{xy} = \frac{1}{2\sqrt{x}}\)
Critical point with the smallest x - coordinate
(0, \(\frac{11}{2}\))
Classification cannot be determined
Critical point with the next smallest x - coordinate
(1, 6)
Classification is local maxima
To learn more about maxima, refer to the link-
https://brainly.com/question/82347
#SPJ4
(1-5i)(4-2i) Slove with complex numbers please list all steps thank you
Answer:
\(-6-22i\)
Step-by-step explanation:
\((1-5i)(4-2i)\\\\(1)(4)+(1)(-2i)+(-5i)(4)+(-5i)(-2i)\\\\4-2i-20i+10i^2\\\\4-22i+10(-1)\\\\4-22i-10\\\\-6-22i\)
Recall that \(i^2=-1\)
Which of the following best describes ethics?
it is a set of thoughts that are made about kinds of individuals
or their manners of conducting activities
it is a set of values that define r
Answer:
the second
Step-by-step explanation:
refers to well-founded standards of right and wrong that prescribe what humans should do, usually in terms of rights, obligations, benefits to society, justice
Laboratory tests show that the lives of
light bulbs are normally distributed with
a mean of 750 hours and a standard
deviation of 75 hours. Find the
probability that a randomly selected
light bulb will last between 750 and 825
hours.
[? ]%
Answer:
34%
Step-by-step explanation:
LammettHash is right just take it as a whole number (for those of you using acellus)
In performing a regression analysis involving two numerical variables, you are assuming I. the variances of Xand Yare equal. II. the variation around the line of regression is the same for each Xvalue. III. that Xand Yare independent. Select one: A. I only C B. III only C. II only D.All of these
As X and Y are two numerical variables. Because they are independent so there is no relationship between the two variables other than the linear relationship described by the regression equation. The correct answer is B. III only, that is X and Yare independent.
When performing a regression analysis involving two numerical variables, we assume that X and Y are independent, meaning that the value of one variable does not depend on the value of the other variable. However, we do not assume that the variances of X and Y are equal or that the variation around the line of regression is the same for each X value. These assumptions are not necessary for performing a regression analysis. Violation of this assumption can lead to spurious results and incorrect inferences. So, the correct option in B. III only.
To know more about regression:
https://brainly.com/question/14313391
#SPJ4
PLEASE HELPPPPPPPPPPPPPPPPPPPp
Answer:
I think its 30 meters. The bottom rectangle is 21 Meters and the top square is 9 Meters
Find the first derivative for each of the following:
y = 3x2 + 5x + 10
y = 100200x + 7x
y = ln(9x4)
The first derivatives for the given functions are:
For \(y = 3x^2 + 5x + 10,\) the first derivative is dy/dx = 6x + 5.
For \(y = 100200x + 7x,\) the first derivative is dy/dx = 100207.
For \(y = ln(9x^4),\) the first derivative is dy/dx = 4/x.
To find the first derivative for each of the given functions, we'll use the power rule, constant rule, and chain rule as needed.
For the function\(y = 3x^2 + 5x + 10:\)
Taking the derivative term by term:
\(d/dx (3x^2) = 6x\)
d/dx (5x) = 5
d/dx (10) = 0
Therefore, the first derivative is:
dy/dx = 6x + 5
For the function y = 100200x + 7x:
Taking the derivative term by term:
d/dx (100200x) = 100200
d/dx (7x) = 7
Therefore, the first derivative is:
dy/dx = 100200 + 7 = 100207
For the function \(y = ln(9x^4):\)
Using the chain rule, the derivative of ln(u) is du/dx divided by u:
dy/dx = (1/u) \(\times\) du/dx
Let's differentiate the function using the chain rule:
\(u = 9x^4\)
\(du/dx = d/dx (9x^4) = 36x^3\)
Now, substitute the values back into the derivative formula:
\(dy/dx = (1/u) \times du/dx = (1/(9x^4)) \times (36x^3) = 36x^3 / (9x^4) = 4/x\)
Therefore, the first derivative is:
dy/dx = 4/x
To summarize:
For \(y = 3x^2 + 5x + 10,\) the first derivative is dy/dx = 6x + 5.
For y = 100200x + 7x, the first derivative is dy/dx = 100207.
For\(y = ln(9x^4),\) the first derivative is dy/dx = 4/x.
For similar question on derivatives.
https://brainly.com/question/31399608
#SPJ8
Triangle XYZ was reflected across m and then dilated to form a similar triangle. Which triangle represents the image?
Triangle X Y Z is reflected across line m. It is rotated about point X prime and then is dilated to form a smaller triangle.
Triangle X Y Z is reflected across line m and then is dilated to form smaller triangle X prime Y prime Z prime.
Triangle X Y Z is reflected across line m to form triangle Z prime Y prime X prime.
The triangle that represents the image is; Option B; Triangle X Y Z is reflected across line m and then is dilated to form smaller triangle X prime Y prime Z prime.
How to carry out Transformations?From the given transformation as seen in the attached image, we can say that;
In Option A, the triangle is first reflected across m and then reflected across the vertical line. Then, it is dilated.
In Option C, the triangle is reflected across m but the angles are not preserved.
In Option B, the triangle is reflected across m and then dilated and as such is a correct image similar to the original triangle.
Read more about Transformations at; https://brainly.com/question/4289712
#SPJ1
It's Option B.
(You can also call it the middle one, up to you <3)