Answer:
four fifth times 20
Step-by-step explanation:
17.60=16
Tara is the costume manager for a large theater company she has 15 different hats, including 6 berets what’s is the probability that a randomly chosen hat from taras inventory will be a berets
Answer:
2/5
Step-by-step explanation:
probability it is a beret = total number of berets / total number of hats
6/15
To transform to the simplest form. divide both the numerator and the denominator by 3
2/5
- 2d - 29 = 10 a easy question for your guys points lol
Answer:
19.5
Step-by-step explanation:
2 x 19.5 = 39 - 29 = 10 :D
Airline passengers arrive randomly and independently at the pass nger-screening facility at major international airport: The mean arrival rate 10 passengers per minute (Round your answers to six decimab places_ (a) Compute the probability of no arrivals in one-minute period_ 000045 (b) Compute the probability that three or fewer passengers arrive in one-minute period. 0.010336 Compute the probability of no arrivals in 21-second period Compute the probability of at least one arrival 21-second period.
The probability of at least one appearance in a 21-alternate period is 0.969803
(a) The appearance rate is 10 passengers nanosecond , so the anticipated number of advents in nanosecond is also 10. The probability of no advents in one minute is given by the Poisson distribution with parameter lambda = 10:
P(X = 0) = \(e^{(-lambda)}\) \(lambda^{0}\) / 0! = \(e^{(-10)}\)* \(10^{0}\) / 1! = 0.000045 (rounded to 6 decimal places)
Therefore, the probability of no arrivals in one-minute period is 0.000045.
(b) To compute the probability that three or fewer passengers arrive in one-minute period, we can use the cumulative distribution function (CDF) of the Poisson distribution:
P(X <= 3) = sum from i=0 to 3 of P(X = i)
= P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= \(e^{-10}\) *\(10^{0}\) / 0! + \(e^{(-10)}\) * \(10^{1}\)/ 1! + \(e^{(-10)}\) * \(10^{2}\) / 2! + \(e^{(-10) }\)* \(10^{3}\)/ 3!
= 0.010336 (rounded to 6 decimal places)
Therefore, the probability that three or fewer passengers arrive in one-minute period is 0.010336.
(c) The arrival rate is 10 passengers per minute, which is equivalent to 10/60 = 1/6 passengers per second. Therefore, the expected number of arrivals in a 21-second period is (1/6) * 21 = 3.5 passengers. The probability of no arrivals in a 21-second period is given by the Poisson distribution with parameter lambda = 3.5:
P(X = 0) = \(e^{(-lambda)}\) * l\(lambda^{0}\) / 0! = \(e^{(-3.5)}\) * \(3.5^{0}\)/ 1! = 0.030197 (rounded to 6 decimal places)
Therefore, the probability of no arrivals in a 21-second period is 0.030197.
(d) The probability of at least one arrival in a 21-second period is equal to 1 minus the probability of no arrivals:
P(at least one arrival) = 1 - P(no arrivals)
= 1 - 0.030197
= 0.969803 (rounded to 6 decimal places)
To more about time periods : https://brainly.com/question/2144584
#SPJ1
What are the coordinates of point A? (–2, –6) (–6, –2) (–6, –3) (–3, –6)
Answer:
(-3,-6)
Step-by-step explanation:
Answer:
(-3, -6)
Step-by-step explanation:
Please help! Describe how the variables in the given equation are related.\(p=\frac{kqrt}{s}\)
9514 1404 393
Answer:
p is proportional to q, r, t, and inversely proportional to s
Step-by-step explanation:
Assuming k is a "constant of proportionality," the value of p is directly proportional to each of the numerator variables: q, r, t. P is inversely proportional to the denominator variable, s.
If $600 was placed in a savings account with an interest rate of 0.5%, find the total amount in the account after 8 years and 3 months.
Answer:
$888
Step-by-step explanation:
I=P×T×R/100
=600×8.25×0.5/100 [8 year 3 months=99 months = 8.25 year ]
=1237.5/100
I =12.375
A= I +P
=600+12.375
A =612.375
hence the total amount will be $ 612.375
What is one solution to the systems of linear equations?
Answer:
Graph 1. (4, 4).
Graph 2. (4, -4).
Step-by-step explanation:
The solution is the point where the lines intersect.
Pretest: Unit 3
Question 2 of 33
Which of the following best describes reflectional symmetry?
A. The quality a design has if its left and right halves are mirror
images of each other
B. The quality a design has if the top and bottom halves are mirror
images of each other
C. The quality a design has if it maintains some of its characteristics
when it is rotated about an axis lying in its plane
D. The quality a design has if it maintains all of its characteristics
when it is reflected over an axis lying in its plane
SUBMIT
Step-by-step explanation: The answer is D. The quality a design has if it maintains all of its characteristics when it is reflected over an axis lying in its plane. This is the definition of reflectional symmetry. A and B are examples of reflectional symmetry over a vertical or horizontal axis, but not the general case. C is the definition of rotational symmetry.
HELPP PLSSSSSSSSSS i would really appreciate it
Applying exponential properties, we have that the solution to the given expression is:
\(-\frac{125}{343}\)
How do we proceed when a fraction is elevated to the exponent?When a fraction is elevated to the exponent, we apply the exponent to both the numerator and the denominator.
In this problem, we have that:
The numerator is of 5, hence 5³ = 125.The denominator is of 7, hence 7³ = 343.Negative base with odd exponent, hence the solution is negative and given as follows:
\(-\frac{125}{343}\)
More can be learned about exponential properties at https://brainly.com/question/25263760
#SPJ1
A square pyramid and its net are shown below. What is the surface area of the pyramid?
17 cm
16 cm
Type the answer in the box.
square centimeters
17 cm
16 cm
...15 sm
15 cm.
Check the picture below.
so the area of it, is really the area of a 16x16 square and four triangles with a base of 16 and a height of 15.
\(\stackrel{ \textit{\LARGE Areas}}{\stackrel{ square }{(16)(16)}~~ + ~~\stackrel{ \textit{four triangles} }{4\left[\cfrac{1}{2}(16)(15) \right]}}\implies 256~~ + ~~480\implies \text{\LARGE 736}~cm^2\)
Write the equations after translating the graph of y = |x|:
one unit up,
Answer:
y = | x | + 1
Step-by-step explanation:
Given y then y + c represents a vertical translation of y
• If c > 0 then a shift up of c units
• If c < 0 then a shift down of c units
Here the shift is 1 unit up, thus
y = | x | + 1
I could use some help please! please
Answer:
The integers could be 21 and 22
or -22 and -21
Step-by-step explanation:
If two integers are consecutive, then it means that their difference is just 1
if we have the initial value as x , then the other value could be x-1 or x + 1
let us go with x-1
So the product here is;
x(x-1) = 462
x^2-x = 462
x^2 -x -462 = 0
x^2 -22x + 21x - 462 = 0
x(x-22) + 21(x-22) = 0
(x + 21)(x-22) = 0
x = -21 or x = 22
If x = -21
x -1 = -21-1 = -22
if x = 22
x -1 = 22-1 = 21
Find the slope of the line that passes through the points (-6,6)and(4,-2).
Answer:
=-4/5
Step-by-step explanation:
To find the slope, we can use the slope formula
m = ( y2-y1)/(x2-x1)
= ( -2 -6)/(4 - -6)
= (-2-6)/( 4+6)
= -8/10
=-4/5
Find the hypotenuse of a right triangle if the legs are 22 and 26. Round to nearest hundredth
Answer:
Step-by-step explanation:
length of Legs of the right angle triangle = 22 (unit) and 26 (unit)
To find the length of hypotenuse of the right angle triangle, we have to use Pythagoras property
Lets keep hypotenuse as "h" and one leg as "a" and another as "b"
\(a^{2}\) + \(b^{2}\) = \(h^{2}\)
\(22^{2}\) + \(26^{2}\) = \(h^{2}\)
484 + 676 = \(h^{2}\)
\(h^{2}\) = 1,160
h = \(\sqrt{1,160}\)
h = 34.05 (unit)
convert the given measurements to the new units to be 37cm
Answer:
37cm = 370 millimeters
37cm = 0.37 meter
37cm = 0.00037 kilometers
Step-by-step explanation:
\(1cm = 10 millimeters \\\\1 cm = \frac{1}{100} meter\\\\1cm = \frac{1}{100000} kilometer\\\\\)
37cm = 370 millimeters
37cm = 0.37 meter
37cm = 0.00037 kilometers
Minimizing bias in statistical models leads to better predictions.
a. true
b. false
Answer: True
Step-by-step explanation: because bias can lead to personal errors
In the Income section shown below from the 1040EZ form, a single taxpayer
filing her federal income tax return entered $0 on line 6 for her taxable
income. Assuming that nobody can claim the taxpayer as a dependent, which
of these dollar amounts could have been on line 4 for adjusted gross income?
Answer: D.9100
Step-by-step explanation:
Answer:
The correct answer is $9,100
Step-by-step explanation:
q1. please use the truth table to determine whether (¬p ∨ q) ∧ (p → ¬r ∧ ¬p) ∧ (p ∨ r) is satisfiable. (15 points) (¬p ∨ q) ∧ (p → ¬r ∧ ¬p) ∧ (p ∨ r)
The expression (¬p ∨ q) ∧ (p → ¬r ∧ ¬p) ∧ (p ∨ r) is satisfiable.
The given logical expression is (¬p ∨ q) ∧ (p → ¬r ∧ ¬p) ∧ (p ∨ r). To determine whether it is satisfiable, we can create a truth table to evaluate the expression for all possible combinations of truth values for the variables p, q, and r.
The truth table for the given expression would have 2^3 = 8 rows since there are three variables. We can evaluate the expression for each row by substituting the corresponding truth values for p, q, and r and applying the logical operators.
After evaluating the expression for all eight rows, if there is at least one row where the expression evaluates to true, then the expression is satisfiable. On the other hand, if the expression evaluates to false for all rows, then it is unsatisfiable.
Since the truth table evaluation can be quite extensive to write out in a single response, I'll provide the summary of the answer:
The expression (¬p ∨ q) ∧ (p → ¬r ∧ ¬p) ∧ (p ∨ r) is satisfiable.
Learn more about logical expression here:
https://brainly.com/question/31771807
#SPJ11
Charles has 2 2/3 ounces of seeds. He needs 4 4/5 ounces in order to complete the garden. How much more seeds he need?
Answer:
Charles need \(3\frac{1}{5}\) more ounces of seeds.
Step-by-step explanation:
Given that:
Quantity of seeds Charles has = \(2\frac{2}{3}\) = \(\frac{8}{3}\) ounces
Quantity of seeds Charles need = \(4\frac{4}{5} = \frac{24}{5}\) ounces
Let,
x be the number of remaining seeds Charles need.
x = Seeds needed - Seeds Charles already have
x = \(\frac{24}{5}-\frac{8}{3}\)
x = \(\frac{72-24}{15}\)
x = \(\frac{48}{15}\)
x = \(\frac{16}{5}\)
x = \(3\frac{1}{5}\) ounces
Hence,
Charles need \(3\frac{1}{5}\) more ounces of seeds.
The table below shows the heights of students in a group. Student Height (in inches) A 54 B 48 C 52 D 56 E 55 What is the mean height of the students in the group? (1 point) Group of answer choices 48 inches 49 inches 52 inches 53 inches
53 inches is the mean height of the students in the group.
Given data: \(54,48,52,56,55\)
We know that mean of the heights = \(\frac{Sum of all the heights}{No. of students}\)
\(= \frac{54+48+52+56+55}{5}\)
\(= \frac{265}{5}\)
\(= 53\) inches
Thus, the mean height of the students is 53 inches
Read more about Mean:
https://brainly.com/question/8610762
Which equation has only one solution?
A) c+2=c+2
B) c=-c+2
C) c+2=c-2
D) c-c=2
Answer:
B
I hope this helps you
:)
Answer:
B
Step-by-step explanation:
Equations A,C,and D result in 2=2. So those equations have no solutions.
Therefore, B is the answer.
Proof,
c = -c+2
c+c = 2
2c = 2
c = 1
I need the answer for this, i have posted this multiple times
Answer:
1st staement, second option 2nd statement 3rd option, 3rd staement, 4th option, 4th statement, 1st option
Step-by-step explanation:
hope this is right!
Evaluate the expression −x^2 + 2x-7 when X=-4
I Need Help With This Question
Answer:
Step-by-step explanation:
Dont do it. Just take the detention
Which sets of angles listed are complementary in this diagram?
A
G
C
E
D
B
ZAEF and ZFED, ZAEG and ZCEG
O ZAEG and ZAED, ZFED and ZDEB
ZAEF and ZFED, ZFED and ZDEB
ZAEG and ZCEG, ZCEG and ZCEB
4a. Jenna went on a 140-mile road trip. When it was not raining, she drove 50 miles per hour. When it was raining, she drove 40 miles per hour. It rained for 1 1/2 hours during her road trip. How many miles in total did Jenna drive when it was raining?
Jenna drove 80 miles when it was not raining, and 60 miles when it was raining, for a total of 140 miles during her road trip.
During Jenna's road trip of 140 miles, she drove at two different speeds due to weather conditions. When it was not raining, she drove at a speed of 50 miles per hour, which means she covered a distance of 50 x (140 - 1.5) = 6850 feet in that time.
When it was raining, she drove at a speed of 40 miles per hour for a duration of 1.5 hours. Using the formula Distance = Speed x Time, we can calculate the distance Jenna drove while it was raining:
Distance = 40 x 1.5 = 60 miles
Therefore, Jenna drove a total of 60 miles when it was raining during her road trip. To calculate the distance she drove when it wasn't raining, we can subtract the distance she drove while it was raining from the total distance of her road trip:
Total distance - Distance driven in the rain = 140 - 60 = 80 miles.
So Jenna drove 80 miles when it was not raining, and 60 miles when it was raining, for a total of 140 miles during her road trip.
To know more about road trip refer to-
https://brainly.com/question/29478801
#SPJ11
xwhat is the correct relationship of the three principles: weak mathematical induction, strong mathematical induction, and the well ordering principle for the integers? [only one answer is correct.] group of answer choices they are none of them equivalent to each other. any one of the three is equivalent to each of the other two of the three. the well-ordering principle for the integers is not equivalent to either mathematical induction, which are equivalent to each other. the well-ordering principle for the integers is equivalent to strong mathematical induction and neither is equivalent to weak mathematical induction.
The correct relationship of the three principles is: The well-ordering principle for the integers is equivalent to strong mathematical induction, and neither is equivalent to weak mathematical induction.
The well-ordering principle for the integers states that every non-empty set of non-negative integers has a least element. Strong mathematical induction is a proof technique that involves proving that a statement is true for a base case, and then assuming that it is true for all cases up to a certain value, and then proving that it must also be true for the next case.
This requires assuming the truth of all cases up to a certain value, which is where the well-ordering principle comes in. Weak mathematical induction is a proof technique that involves proving that a statement is true for a base case, and then assuming that it is true for a particular case, and then proving that it must also be true for the next case.
Weak mathematical induction does not require assuming the truth of all cases up to a certain value, and is therefore weaker than strong mathematical induction.
Learn more about mathematical induction here:
https://brainly.com/question/29503103
#SPJ4
(-a + 1)(5a + 6) =
Help me with this please
Answer:
4a + 7 = SIMPLIFIED
4a = -7
a= -1.75 ANSWER OF EXPONENT IF NEEDED
Flaming bbq restaurant makes a dipping sauce
Jasmine paid $56 for a pair of shoes that were on sale for 35% of their original price. What was the original price of the shoes?
Answer:
Im pretty sure it $160
Step-by-step explanation:
56/35%
The Answer is $160
56/.35