Step-by-step explanation:
Use distributive property:
3x+6=4x+4
Eliminate one variable:
Subtract 3x from both sides.
6=x+4
Subtract 4 from both sides:
2=x.
B is correct.
WILL GIVE BRAINLIEST FOR CORRECT ANSWER AND EXPLANATION Belinda is buying fencing for her vegetable garden to keep her dogs out. The length of her garden is 15.6 feet, and the width is 10.8 feet. How much fencing material should she purchase to build the fence around the garden?
A. 168.48 ft
B. 54 ft
C. 52.8 ft
D. 26.4 ft
Answer:
C. 52.8 ft.
Step-by-step explanation:
Calculate the perimeter of the garden
\(P=2l+2w=2(15.6)+2(10.8)=31.2+21.6=52.8\)
The perimeter represents the length of the fencing material she needs
Hope this helps
Answer:
52.8 if u give me brainliest tht will be so help full:)
Step-by-step explanation:
PLS HELP! THIS IS DUE! BRAINLIST
Show all steps if the answer shows your work I will make you brainlist
Answer:
1695.6m
Step-by-step explanation:
The equation for how they find the volume of a cylinder is V=πr^2h
so the radius is 6x6=36
then 36x3.14=113.04
then you multiply that by 15
113.04x15=1695.6
The unit are M
Explain how to find 7/10 + 9/10
Answer:
8/5 is the answer
Step-by-step explanation:
7/10+9/10
7+9/10( because if the lcm is same in both the expression we can write one of them and do according to the sign)
16/10( adding the number)
8/5( dividing the numbers and finding the value in fraction form)
OR,
16/10
1.6( dividing and finding the value in decimal form)
what are the differences between cos(x) and cos^-1(x)
cos^-1(x) represents the inverse of cos(x).
Fill in the equation for this
function.
y = [? ](x-[])² + []
The quadratic function for this problem is defined as follows:
y = 4(x + 3)² - 2.
How to define the quadratic function given it's vertex?The quadratic function of vertex(h,k) is given by the rule presented as follows:
y = a(x - h)² + k
In which:
h is the x-coordinate of the vertex.k is the y-coordinate of the vertex.a is the leading coefficient.The vertex is the turning point of the function, hence the coordinates in this problem are given as follows:
(-3,-2).
Hence:
y = a(x + 3)² - 2.
When x = -2, y = 2, hence the leading coefficient a is obtained as follows:
2 = a(-2 + 3)² - 2
a = 4
Hence the equation is given as follows:
y = 4(x + 3)² - 2.
More can be learned about quadratic functions at https://brainly.com/question/31895757
#SPJ1
A leaking faucet was found in one of the labs in S\&E building. If a faucet is dripping at a rate of one drop per second and each drop contains 0.150 milliliters, calculate how much water (in liters) will be lost in one year.
A leaking faucet in the S&E building lab, dripping at a rate of one drop per second, will result in a water loss of approximately 4,725 liters in one year.
To calculate the amount of water lost in one year, we need to determine the number of drops per year and then convert it to liters. Since the faucet drips at a rate of one drop per second, there are 60 drops in a minute (60 seconds), which totals to 3,600 drops in an hour (60 minutes).
In a day, there would be 86,400 drops (24 hours * 3,600 drops). Considering a year of 365 days, the total number of drops would be approximately 31,536,000 drops (86,400 drops * 365 days). To convert the number of drops to liters, we need to multiply the total number of drops by the volume of each drop.
Given that each drop contains 0.150 milliliters, we convert it to liters by dividing by 1,000, resulting in 0.00015 liters per drop. Multiplying the total number of drops by the volume per drop, we find that the total water loss is approximately 4,725 liters (31,536,000 drops * 0.00015 liters/drop).
Therefore, in one year, the leaking faucet in the S&E building lab would result in a water loss of approximately 4,725 liters.
Learn more about milliliters here:
https://brainly.com/question/20320379
#SPJ11
If X is an exponential random variable with parameter λ, and c>0, show that cX is exponential with parameter λ/c.CDF Method:Let X be a continuous random variable and let Y=g(X)be a function of that random variable, where g(X) is some function of X. Let fX(x) be the probability density function (PDF) of X and fY(y) be the PDF of Y. Recall that the cumulative distribution function (CDF) of X is defined as the probability that X is less than or equal to some value x, for any real value of x. Mathematically,FX(x)=P(X≤x)Similarly, FY(y)=P(Y≤y).To find the distribution of Y, we can use the CDF method. We start by expressing the CDF of Y (FY(y)) in terms of X. We do this by using the fact that Y=g(X)and then solving the resulting inequality for X. Mathematically,FY(y)=P(Y≤y)=P(g(X)≤y)=⋯=P(X ???⋯)We isolate X in the inequality and we get an inequality which can be changed into CDF terms (the CDF of X).After we find the CDF of Y, we can differentiate it to get the PDF of Y. Recall that for any random variable, the first derivative of its CDF is equal to its PDF. In mathematical terms,fY(y)=ddyFY(y)We do this using the CDF of Y we obtained earlier. After completing this step, you will have the PDF of Y.
We have shown that cX is exponential with parameter λ/c when X is an exponential random variable with parameter λ and c > 0.
To show that cX is exponential with parameter λ/c when X is an exponential random variable with parameter λ, and c>0, we will use the CDF method:
1. Define the transformation: Let Y = cX be a function of the random variable X, where c > 0.
2. Find the CDF of Y: We want to find P(Y ≤ y), which is equal to P(cX ≤ y) or P(X ≤ y/c).
3. Express CDF of Y in terms of X: Since P(X ≤ y/c) is the CDF of X at y/c, we have FY(y) = FX(y/c).
4. Find the PDF of X: The exponential distribution has the PDF fX(x) = λ * exp(-λx) for x ≥ 0.
5. Differentiate the CDF of Y to find its PDF: To find fY(y), we differentiate FY(y) with respect to y. Using the chain rule, we have:
fY(y) = d(FX(y/c))/dy = fX(y/c) * (1/c)
6. Substitute the PDF of X: Now, we replace fX(y/c) with its exponential form λ * exp(-λ(y/c)):
fY(y) = (λ * exp(-λ(y/c))) * (1/c)
7. Simplify the expression: fY(y) = (λ/c) * exp(-λ(y/c))
This is the PDF of an exponential distribution with parameter λ/c. Therefore, cX is exponential with parameter λ/c when X is an exponential random variable with parameter λ and c > 0.
Learn more about "variable": https://brainly.com/question/82796
#SPJ11
The length of a planet's orbit around a star is approximately 22,200,000 km. It takes the planet about 1230 Earth days to complete a full orbit. What is the planet's average speed in kmh-1 to 3sf?
Answer:
Approximately \(12.9\; \rm km \cdot h^{-1}\), assuming that this orbit is circular.
Step-by-step explanation:
The question is asking for a tangential velocity with the unit \(\rm km \cdot h^{-1}\). The unit of the given distance is already in \(\rm km\) as required. Convert the unit of the orbital period to hours:
\(\begin{aligned}T &= 1230\; \text{day} \times \frac{24\; \rm h}{1\; \text{day}}. = 29520\; \rm h\end{aligned}\).
Calculate the angular velocity \(\omega\) of this planet from its orbital period:
\(\begin{aligned}\omega &= \frac{2\, \pi}{T} \\ &= \frac{2\, \pi}{29520\; \rm h} \approx 2.1285 \times 10^{-4}\; \rm h^{-1}\end{aligned}\).
Given the radius \(r\) of the orbit of this planet, the tangential velocity \(v_{\perp}\) of this planet would be:
\(\begin{aligned}v_{\perp} &= \omega\, r \\ &\approx 2.1285 \times 10^{-4}\; \rm h^{-1} \times 2.22\times 10^{7}\; \rm km \\ &\approx 4.73 \times 10^{3}\; \rm km \cdot h^{-1}\end{aligned}\).
If the orbit of this planet is circular, the velocity of the planet would be equal to its tangential velocity: \(4.73\times 10^{3}\; \rm km \cdot h^{-1}\).
in multiple regression analysis, the correlation among the independent variables is termed _____.A) multicollinearityB) linearityC) adjusted coefficient of determinationD) homoscedasticity
In multiple regression analysis, the correlation among the independent variables is termed multicollinearity
Multicollinearity in a multivariate regression model refers to the correlations between two or more independent variables. Multicollinearity can lead to skewed or false results when a researcher or analyst attempts to determine how effectively each independent variable can be used to predict or understand the dependent variable in a specific statistical model.
It is the term which is generally used to describe the situation in which two or more explanatory variables in a multiple regression model have strong linear correlations with one another but not with the dependent variable. Many times, the creation of new dependent variables that are reliant on other variables can also result in multicollinearity.
Read more about multicollinearity on:
https://brainly.com/question/17216244
#SPJ4
label this graph as “linear” or “non linear”
This answer is Nonlinear
The function f(x)=2x^2-12x+8 is graphed below. Determine the slope of the secant line of it for each of the intervals indicated in the table.
100 points!
The slope of a line is - 1/3 . Find the slope of a line that is perpendicular to this line.
-3
1/3
3
Answer:
3
Step-by-step explanation:
The equation of a perpendicular line to m = - \(\frac{x}{3}\) must have a slope that is the negative reciprocal of the original slope.
m perpendicular = - \(\frac{1}{\frac{-1}{3} }\)
Simplify the result.
m perpendicular = 3
The answer is:
3
Work/explanation:
If two lines are perpendicular to each other, their slopes will be negative inverses.
The slope of the given line is \(\sf{-\dfrac{1}{3}}\).
The negative inverse of that is 3; so I changed the sign from negative to positive, and flipped the number.
Hence, the slope is 3.In problems 1 - 10 find dy/dx by differentiating implicitly then find the value of dy/dx at th given point 1. x2 + y2 = 100, point (6, 8) 2. x² + 5y = 45, point (5,2) 3. x2 – 3xy + 7y=5 , point (2,1) 5. B + = 1 , point (0,4) 7. In(y) + 3x – 7 = 0 , point (2,e) 4. Vx + Vy = 5 , point (4,9) 0B + B = 1, point (3,0) 8. x2 - y2 = 16 , point (5,3) 9. x2 - y2 = 16 , point (5, -3) 10.y2 + 7x3 - 3x = 8 , point (1,2) x = 4y-y 11. Find the slopes of the lines tangent to the graph in shown at the points (3,1), (3,3), and (4,2). (4,2) 12. Find the slopes of the lines tangent to the graph in shown where the graph crosses the y-axis. (31)
The differentiation of function x^2 + y^2 = 100 is -3/4. The differentiation of function x^2 + 5y = 45 is -2. The differentiation of function x^2 - 3xy + 7y = 5 is 4/11.
Differentiating both sides of x^2 + y^2 = 100 with respect to x using implicit differentiation, we get:
2x + 2y(dy/dx) = 0
Solving for dy/dx, we get:
dy/dx = -x/y
At point (6,8), x = 6 and y = 8, so:
dy/dx = -6/8 = -3/4
Differentiating both sides of x^2 + 5y = 45 with respect to x using implicit differentiation, we get:
2x + 5(dy/dx) = 0
Solving for dy/dx, we get:
dy/dx = -2x/5
At point (5,2), x = 5, so:
dy/dx = -2(5)/5 = -2
Differentiating both sides of x^2 - 3xy + 7y = 5 with respect to x using implicit differentiation, we get:
2x - 3y - 3x(dy/dx) + 7(dy/dx) = 0
Solving for dy/dx, we get:
dy/dx = (3x - 2y)/7x - 3y
At point (2,1), x = 2 and y = 1, so:
dy/dx = (3(2) - 2(1))/[7(2) - 3(1)] = 4/11
To know more about differentiation, here
brainly.com/question/31495179
#SPJ4
--The complete question is, Find dy/dx by implicit differentiation and then evaluate at the given point:
a. x^2 + y^2 = 100, point (6,8)
b. x^2 + 5y = 45, point (5,2)
c. x^2 - 3xy + 7y = 5, point (2,1)--
Match each equation to its factorized version and solution. 24x – 6x2 = 0 2x(x 3) = 0 solution: x = 0, x = -3 14x – 7x2 = 0 6x(4 – x) = 0 solution: x = 0, x = 4 2x2 6x = 0 x(4 – x) = 0 solution: x = 0, x = 4 4x – x2 = 0 7x(2 – x) = 0 solution: x = 0, x = 2
So, The correct match of these quadratic equations are
Equation A has a solution x = 3 and x = 0.
Equation B has a solution x = 2 and x = 4.
Equation C has a solution x = -3 and x = 0.
Equation D has a solution x = 4 and x = 0.
According to the equation
we have given that the some equation with there values of the x and we have to find and match the correct statement with the given values of x.
So, For this purpose, we know that the
The given quadratic equations are:
A. 24x – 6x^2 = 0 and 2x(3x) = 0 with solution x = 0, x = -3
B. 14x – 7x^2 = 0 and 6x(4 – x) = 0 with solution x = 0, x = 4
C. 2x^2+ 6x = 0 and x(4 – x) = 0 with solution x = 0, x = 4
D. 4x – x^2 = 0 and 7x(2 – x) = 0 with solution x = 0, x = 2
And now we solve it
So,
Take A.
24x – 6x^2 = 0 and 2x(3x) = 0
6x(3 -x) = 0 And 6x^2 = 0
here x = 3 and x = 0.
And
Take B.
14x – 7x^2 = 0 and 6x(4 – x) = 0
7x(2 -x) = 0 And 6x(4 – x)= 0
here x = 2 and x = 4.
And
Take C.
2x^2+ 6x = 0 and x(4 – x) = 0
2x(x +3) = 0 And x(4 – x)= 0
here x = -3 and x = 0.
And
Take D.
4x – x^2 = 0 and 7x(2 – x) = 0
x(4 -x) = 0 And 7x(2 – x)= 0
here x = 4 and x = 0.
So, The correct match of these quadratic equations are
Equation A has a solution x = 3 and x = 0.
Equation B has a solution x = 2 and x = 4.
Equation C has a solution x = -3 and x = 0.
Equation D has a solution x = 4 and x = 0.
Learn more about quadratic equations here
https://brainly.com/question/1214333
#SPJ4
Slope of x/a + y/b=1
Answer:
y = -bx/a + b
Step-by-step explanation:
Report if wrong
-Stylez-
Just help me and I will mark u brianliest
Answer:
because the angle C is 90, because in the triangle the angle of the barrier is equal to 90
HELP ME PLEASE
I WILL BRAINLIEST U
Answer:
that is corresponding
the box is to be filled with sand. which measure would be used to find the amount of sand the box will hold?
To find the amount of sand that a box will hold, we would use the measure of volume.
Volume is the amount of space that an object or substance takes up in three dimensions, typically measured in cubic units. In the case of the box being filled with sand, we would use the volume of the box to determine how much sand it can hold. This can be calculated by multiplying the length, width, and height of the box together, which gives the total cubic units of volume. The resulting value would be in cubic units such as cubic inches, cubic feet, or cubic meters, depending on the units of measurement used.
Learn more about Volume here: brainly.com/question/28058531
#SPJ11
Solve for X.
4(x - 3) - 5x >- 2
Answer:
x<-10
Step-by-step explanation:
4x-12-5x>-2
-1x-12>-2
+12 +12
-1x>10
-1x/-1>10/-1
x<-10
u switch the inequality when the number is divided by a negative number btw:) hope this helped:D
an online retailer is shipping a shower curtain pole that is 13 feet long. their largest box is in the shape of a rectangular prism that is 10 ft × 9 ft × 8 ft. will the pole fit in the box?
Yes, the pole will fit in the box when kept diagonally.
In order to fit the pole in rectangular prism or cuboid, it has to be kept diagonally. Now, we need to calculate the length of body diagonal of cuboid. The length of body diagonal of cuboid should be greater than pole to fit it.
The length of body diagonal of cuboid can be calculated by the formula -
Diagonal = √(l² + b² + h²)
Keep the values in formula to find the diagonal of rectangular prism
Diagonal = √(10² + 9² + 8²)
Taking square of the three numbers to find the diagonal of rectangular prism
Diagonal = √100 + 81 + 64
Taking sum of numbers present on Right Hand Side of the equation
Diagonal = √245
Taking square root of the number
Diagonal = 15.65 feet
Hence, as the diagonal of rectangular prism is greater than shower curtain pole, it will definitely fit.
Learn more about diagonal calculation -
https://brainly.com/question/18839786
#SPJ4
In a sale, the price of a book is reduced by 25%.
The price of the book in the sale is £12
Work out the original price of the book
Question: In a sale, the price of a book is reduced by 25%. The price of the book in the sale is £12. Work out the original price of the book
Answer: £16
Step-by-step explanation:
To determine the original price of the book, we can use the fact that the sale price is 75% (100% - 25%) of the original price. Let's denote the original price as x.
75% of x = £12
To solve for x, we can set up the equation:
0.75x = £12
To isolate x, we divide both sides of the equation by 0.75:
x = £12 / 0.75
x = £16
Therefore, the original price of the book was £16.
what is the triangle’s moment of inertia about the axis through the center?
The moment of inertia of a triangle about its centroidal axis is I = (1/36)b\(h^{3}\).
To determine the moment of inertia of a triangle about an axis passing through its center, we need to know the mass distribution and dimensions of the triangle. The moment of inertia depends on both the shape and mass distribution of the object.
Assuming the triangle is a 2D shape lying in the x-y plane, with its base parallel to the x-axis and its apex at the origin (0, 0), we can calculate the moment of inertia about the axis passing through its center.
The formula for the moment of inertia of a triangle about its centroidal axis is given by:
I = (1/36)b\(h^{3}\)
where I is the moment of inertia, b is the base length of the triangle, and h is the height of the triangle.
Note that this formula assumes a uniform mass distribution within the triangle.
To learn more about moment of inertia here:
https://brainly.com/question/14701751
#SPJ4
A typical tip in a restaurant is 15% of the total bill. If the bill is $160, what would the typical tip be?
Answer:
15 percent of 160 is 24, so $24
The measurements inside a closed cylindrical tank are 20 inches high and 10 inches in radius. Use differentials to estimate the amount of metal in the tank if the metal in the top, the bottom, and the sides is 0.1 inches thick. a. 1007 in b. 507 in? c. 907 in? d. 807 in e. 607 in3
Rounding this approximation to the nearest whole number, we get:
V_metal ≈ 157 cubic inches. None of the given options match this estimation.
To estimate the amount of metal in the tank, we need to calculate the surface area of the metal and then multiply it by the thickness of the metal.
The surface area of the top and bottom of the tank can be calculated as the area of a circle, which is given by the formula A = πr². Since the radius of the tank is 10 inches, the area of each circular end is:
A_top_bottom = π(10)² = 100π square inches
The surface area of the side of the tank can be calculated as the lateral surface area of a cylinder, which is given by the formula A = 2πrh, where r is the radius and h is the height. In this case, the height is 20 inches, and the radius is 10 inches. Therefore, the lateral surface area is:
A_side = 2π(10)(20) = 400π square inches
The total surface area of the metal is the sum of the top, bottom, and side surface areas:
A_total = A_top_bottom + A_side = 100π + 400π = 500π square inches
Since the thickness of the metal is 0.1 inches, we can estimate the volume of the metal by multiplying the surface area by the thickness:
V_metal = A_total × 0.1 = 500π × 0.1 = 50π cubic inches
To find a numerical approximation for the volume, we can use the value of π as 3.14159:
V_metal ≈ 50 × 3.14159 ≈ 157.0795 cubic inches
Rounding this approximation to the nearest whole number, we get:
V_metal ≈ 157 cubic inches
None of the given options match this estimation. It seems there might be an error in the available options.
Learn more about lateral surface area here:
https://brainly.com/question/15476307
#SPJ11
calculate the surface area and then the volume
Answer:
46
Step-by-step explanation:
length x width x height
7 x 5 x 3
Answer: surface area = 142
Volume = 105
* make sure to add labels (units^2, etc.)
Step-by-step explanation:
Area = length x height
Volume = length x width x height
11. Chris buys six guppies. Every month his guppy population doubles. [4]
a) How many guppies will there be after 1 month? 2 months? 3 months?
b) Create a formula that would express the statement above. In your formula let n
equal the number of months, and G equal the total population of guppies.
c) How many guppies will there be after 6.5 months?
d) Can the fish population continue to grow at this rate? Explain
Answer:
G = 6(2)^n
Step-by-step explanation:
a) At 1 month he will have 12 guppies, at 2 months he will have 24 guppies and at 3 months he will have 48 guppies.
b) G = 6(2)^n
This is following the exponential formula.
c) G = 6(2)^6.5 = 543 guppies
d) At this rate, there will be no room for the guppies to continue growing.
Tara has been planting young trees in her garden. The maple tree that is 10 inches taill is
growing 4 inches per month, whereas the oak tree that is 25 inches taill is growing 1 inch per
month. In a few months, the two trees will be the same height. What will that height be?
Write a system of equations, graph them, and type the solution.
The system of the equations are:
y = 10 + 4x
y = 25 + x
The height of tree is 30 inches tall.
The graph is given below.
The solution is (5, 30).
What is an equation?An equation is a mathematical statement that is made up of two expressions connected by an equal sign.
Example:
2x + 4 = 8 is an equation
We have,
Maple tree:
The maple tree that is 10 inches tall is
growing 4 inches per month,
This can be written as,
y = 10 + 4x _____(1)
Where y is the height of the tree.
Oak tree:
The oak tree is 25 inches tall and is growing 1 inch per
month.
This can be written as,
y = 25 + x ______(2)
Where y is the height of the tree.
Now,
From (1) and (2),
In a few months, the two trees will be the same height.
So,
10 + 4x = 25 + x
4x - x = 25 - 10
3x = 15
x = 5
Now,
y = 10 + 4x = 10 + 4 x 5 = 10 + 20 = 30
y = 25 + x = 25 + 5 = 30
Thus,
The height of tree is 30 inches tall.
Learn more about equations here:
https://brainly.com/question/17194269
#SPJ9
Perform A Line By Line Estimate For A Proposed Warehouse. The Existing Warehouse Is 10,000SF And Has A Perimeter Of 410LF. The Proposed Warehouse Is 15,000SF, And Has A Perimeter Of 500LF. Calculate The Area And Perimeter Ratios, Enter Them Into The Spreadsheet, And Calculate The Overall Cost For The Proposed 15000 SF Warehouse. Enter The Appropriate Ratio
The Area Ratio is 1.5. and Perimeter Ratio is 1.22. The estimated overall cost for the proposed 15,000 SF warehouse is $150,000.
To perform a line by line estimate for the proposed warehouse, we'll calculate the area and perimeter ratios between the existing and proposed warehouses. We'll then use these ratios to estimate the overall cost for the proposed 15,000 square feet (SF) warehouse.
Given: Existing Warehouse:
Area: 10,000 SF
Perimeter: 410 LF
Proposed Warehouse:
Area: 15,000 SF
Perimeter: 500 LF
First, let's calculate the area ratio:
Area Ratio = Proposed Area / Existing Area
Area Ratio = 15,000 SF / 10,000 SF
Area Ratio = 1.5
Next, let's calculate the perimeter ratio:
Perimeter Ratio = Proposed Perimeter / Existing Perimeter
Perimeter Ratio = 500 LF / 410 LF
Perimeter Ratio = 1.22 (rounded to two decimal places)
We'll now use these ratios to estimate the overall cost for the proposed 15,000 SF warehouse. Since we don't have specific cost figures, we'll assume a linear relationship between the area and cost.
Cost Estimate = Existing Cost * Area Ratio
Let's assume the existing cost is $100,000.
Cost Estimate = $100,000 * 1.5
Cost Estimate = $150,000
Therefore, the estimated overall cost for the proposed 15,000 SF warehouse is $150,000.
To know more about Ratio here:
https://brainly.com/question/31945112
#SPJ11
A group of students were surveyed to find out if they like watching television or reading during their free time. The results of the survey are shown below:
90 students like watching television
20 students like watching television but do not like reading
80 students like reading
40 students do not like watching television
Make a two-way table to represent the data and use the table to answer the following questions.
Part A: What percentage of the total students surveyed like both watching television and reading? Show your work. (5 points)
Part B: What is the probability that a student who does not like watching television also does not like reading? Explain your answer. (5 points)
Solution for Part A: 10.53% of the total students surveyed like both watching television and reading. Solution for part B: all the students who do not like watching TV, 67% of them also do not like reading.
The probability that the students who do not like watching TV, 67% of them also do not like reading. We can calculate it in the following manner.
To create a two-way table, we can use the information given in the survey:
Watching TV Not Watching TV Total
Reading 20 60 80
Not Reading 70 40 110
Total 90 100 190
Part A:
To find the percentage of students who like both watching television and reading, we look at the number of students who like watching TV and reading, which is 20, and divide it by the total number of students surveyed, which is 190. Then, we multiply the result by 100 to express it as a percentage:
(20/190) x 100 = 10.53%
Therefore, 10.53% of the total students surveyed like both watching television and reading.
Part B:
To find the probability that a student who does not like watching television also does not like reading, we look at the number of students who do not like watching TV and do not like reading, which is 40, and divide it by the total number of students who do not like watching TV, which is 40 + 20 = 60.
Therefore, the probability that a student who does not like watching television also does not like reading is:
40/60 = 2/3 or 0.67
This means that out of all the students who do not like watching TV, 67% of them also do not like reading.
Learn more about probability here brainly.com/question/11234923
#SPJ1
For new customers, there is an additional one-time $150 service fee.
Find a linear equation representing the relationship between x, the number of months of service, and y, the total amount paid in dollars by an
customer.
The value of linear equation which representing the relationship between x, the number of months of service, and y, the total amount paid in dollars by an customer is,
⇒ y = 150x
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
For new customers, there is an additional one-time $150 service fee.
Now, Let the number of months of service = x
And, the total amount paid in dollars by an customer = y
Hence, The correct linear equation is,
⇒ y = 150x
Thus, The value of linear equation which representing the relationship between x, the number of months of service, and y, the total amount paid in dollars by an customer is,
⇒ y = 150x
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ9