Answer:
I don't know
Step-by-step explanation:
Answer:
Step-by-step explanation:
3
A(b) is a function
True or false
Answer:
false
Step-by-step explanation:
because if one of the right side goes to two or more of the left its not a function
4. A PMV bus left Mt. Hagen at 07 arrived in Lae at 1850. It covered a distance 840 km. a) How long is this journey? (1 mark) b) What was the average speed of the bus? (1 mark) litre. per c) Diesel fuel was sold for K5.74 Calculate the cost of fuel for the journey if the fuel consumption rate was 1 litre per 20km. (2 marks) a) the total surfac 5. An empty cylinder weighing 0.7 kg has a diameter of 10 cm and a height of 30 cm. It is then filled with water and closed. Find correct to 1 decimal place:
a) the journey took 11 hours and 50 minutes.
b)the average speed of the bus was 70.95 km/hour.
c) the cost of fuel for the journey was K240.08.
Define distanceDistance is the measure of how far apart two objects or points are from each other. It is a scalar quantity, which means it only has magnitude and no direction. Distance is usually measured in units such as meters (m), kilometers (km), feet (ft), miles (mi), or any other appropriate unit of length.
a) convert the times to a 24-hour format to perform the calculation.
07:00 in 24-hour format is 07:00, and 18:50 in 24-hour format is 18:50.
The journey duration is:
18:50 - 07:00 = 11 hours and 50 minutes
Therefore, the journey took 11 hours and 50 minutes.
b) The average speed of the bus can be found by dividing the distance traveled by the time taken:
Average speed = Distance ÷ Time
= 840 km ÷ 11.83 hours (converted from 11 hours and 50 minutes)
= 70.95 km/hour
Therefore, the average speed of the bus was 70.95 km/hour.
c) The fuel consumption rate is 1 liter per 20 km. Therefore, the bus consumed 840 km / 20 = 42 liters of diesel fuel for the journey.
The cost of fuel can be calculated by multiplying the fuel quantity by the cost per liter:
Cost of fuel = Fuel quantity x Cost per liter
= 42 liters x K5.74/liter
= K240.08 (rounded to two decimal places)
Therefore, the cost of fuel for the journey was K240.08.
To know more about direction, visit:
https://brainly.com/question/13899230
#SPJ1
7. N.CN.7 Determine the zeroes for the equation below. Select all that apply.
x² - 6x +13=0
A. 1
B. 5
C. 13
D. -3 + 2i
E. 3+2i
F. 3+4i
G. 6 + 4i
H. 3-21
I .6-41
Answer:
D. -3 + 2i and E. 3+2i are the zeroes for the equation.
Step-by-step explanation:
A diamond merchant received a shipment of 7/10 of a pound of diamonds. He divided the diamonds into 7 equal lots and sold them to jewelers for making rings and necklaces. What was the weight of the diamonds in each lot? Write your answer as a fraction or as a whole or mixed number.
The weight of the diamonds in each lot is 4.9 pounds.
What is the fractional idea?Here, the fractional idea can be used. A fraction represents a portion of a total. A fraction is a numerical figure that designates a portion of a whole. A fraction is a component or section taken from a whole, which can be any number, a certain value, or an object.
A cargo of half a pound's worth of diamonds was received by a diamond trader. He separated the stones into 4 equal lots and sold them to jewelers so they could be used to make necklaces and rings.
Total shipment = 7/10 pound
number of equal lots = 7
then, 7 x weight = 7/10
weight = 4.9
Therefore, the weight of each lot is 4.9 pounds.
Learn more about weight, here:
https://brainly.com/question/14016157
#SPJ1
If 2 L of water is mixed with 4.5 L of milk and filled into 650 mL cans. Then
cans will be needed to fill the mixture.
The numbers of can required to fill the mixture is 10 cans
Data;
Volume of water = 2Lvolume of milk = 4.5Lvolume of cans = 650mL = 0.65LNumber of Cans Required to fill the mixtureTo find the numbers of can required to fill the mixture, let's add the volume of the mixture.
volume of mixture = volume of water + volume of milk
volume of mixture = \(2 + 4.5 = 6.5L\)
The entire volume of the mixture is 6.5L.
To find the numbers of cans that'll fill the mixture, let us divide 6.5 by 0.65.
Number of can required = \(\frac{6.5}{0.65} = 10\)
From the calculation above, we would need 10 cans to fill the mixture.
Learn more on division and proportions here;
https://brainly.com/question/870035
What is the value of the expression -35.62/2.6 *
Answer:
-13.7
Step-by-step explanation:
when you divide -35,62 by 2.6 you get -13.7
Done! Hope you learned how to do this/understood this and have a great day! Please mark me as brainliest, vote 5.0 on my answer and thank me to show some support! Bye!
Answer:
-13.7
Step-by-step explanation:
Reduce the expression, if possible, by cancelling the common factors.
What the meaning of statement this?
The proof demonstrates that given a well-ordered set W, an isomorphic ordinal can be found using the function F. The uniqueness of this ordinal is established using the Replacement Axioms. The set F(W) is shown to exist for each x in W, and if the least F(W) exists, it serves as an isomorphism of VV onto -y.
Lemma 2.7: This is a previously stated lemma that is referenced in the proof. Unfortunately, without the specific details of Lemma 2.7, it's difficult to provide further explanation for its role in the proof.
Well-ordered set W: A well-ordered set is a set where every non-empty subset has a least element. In this proof, W is assumed to be a well-ordered set.
Isomorphic ordinal: An ordinal is a mathematical concept that extends the notion of natural numbers to represent order and magnitude. An isomorphic ordinal refers to an ordinal that has a one-to-one correspondence or mapping with another ordinal, preserving their order and magnitude properties.
Function F: The function F is defined to assign an ordinal o to each element x in W. This means that for every x in W, there is a corresponding ordinal o.
Existence and uniqueness: The proof asserts that if there exists an ordinal o that is isomorphic to a specific initial segment of the ordinal VV (the set of all ordinals), then this ordinal o is unique. In other words, there is only one ordinal that can be mapped to the initial segment of VV given by x.
Replacement Axioms: The Replacement Axioms are principles in set theory that allow the construction of new sets based on existing ones. In this case, the Replacement Axioms are used to assert that the set F(W) exists, which is the collection of all ordinals that can be assigned to elements of W.
For each x in W: The proof states that for every x in W, there exists an ordinal o that can be assigned to it. If there is no such ordinal, the proof suggests considering the least x for which such an ordinal does not exist.
The least F(W): The proof introduces the concept of the least element in the set F(W), denoted as the least F(W). If this least element exists, it serves as an isomorphism (a one-to-one mapping) of the set of all ordinals VV onto the ordinal -y.
Overall, the proof outlines the existence and uniqueness of an isomorphic ordinal that can be obtained from a well-ordered set W using the function F, and it relies on the Replacement Axioms and the concept of least element to establish this result.
Learn more about axioms here:
https://brainly.com/question/2857184
#SPJ8
In ΔDEF, the measure of ∠F=90°, the measure of ∠E=53°, and DE = 57 feet. Find the length of FD to the nearest tenth of a foot.
Answer:
DF = 45.5 feet
Step-by-step explanation:
∠D = 37°
cos 37 = DF/57
DF = 57·cos 37
DF = 45.5'
how do i solve 1-(1+.04/12)^-12x10
To solve the expression 1 - (1 + 0.04/12)^(-12x10), you can follow these steps: Step 1: Simplify the exponent. In this case, -12x10 simplifies to -120.
Step 2: Evaluate the term within the parentheses first. 0.04/12 simplifies to 0.0033333 (approximately).
Step 3: Add 1 to 0.0033333 to get 1.0033333.
Step 4: Raise 1.0033333 to the power of -120.
Step 5: Calculate the value inside the parentheses using a calculator or software. The result is approximately 0.742657.
Step 6: Subtract the value obtained in Step 5 from 1.
1 - 0.742657 = 0.257343 (approximately).
Hence, the value of the expression 1 - (1 + 0.04/12)^(-12x10) is approximately 0.257343.
It's important to follow the order of operations (PEMDAS/BODMAS) when solving mathematical expressions. In this case, the exponent is evaluated first, followed by addition and subtraction. Utilizing a calculator or software that supports exponentiation and parentheses can help simplify complex expressions and obtain accurate results efficiently.
For more such questions on exponent.
https://brainly.com/question/13669161
#SPJ8
Want to choose 2 letters ,without replacement, from 5 letters
Please help me with this prob & stat questions!
What is 31/50 as a percent
Answer:
62%
Step-by-step explanation:
31/50 can be multiplied by 2 to get 62/100. 62/100 is equal to 62%. to get percents, attempt to get the demoninator (bottom number in fraction) to be 100, then the top number is the percent (because its basically saying 62 out of 100 pieces, which is 62 percent)
a recipe that makes 4 servings calls for 2/3 cup of flour how much flour is required to make 20 servings
Answer:
3.35 cups
Step-by-step explanation
Answer:
3 1/3
Step-by-step explanation:
THATS THE ANSWER BRAINLIEST PLEASE
Which of the following is an equivalent form of the compound inequality −44 > −2x − 8 ≥ −48?
−2x − 8 > −44 and −2x − 8 ≥ −48
−2x > −44 and −8 ≥ −48
−2x − 8 < −44 and −2x − 8 ≤ −48
−2x − 8 < −44 and −2x − 8 ≥ −48
Answer:
The answer is −2x − 8 < −44 and −2x − 8 ≥ −48. OR answer choice D
Step-by-step explanation:
Answer:
D) −2x − 8 < −44 and −2x − 8 ≥ −48Step-by-step explanation:
Given compound inequality:
−44 > −2x − 8 ≥ −48Just split the inequality into two simpler inequalities:
−44 > −2x − 8 ⇒ −2x − 8 < - 44 and −2x − 8 ≥ −48Correct choice is D
solve for 8v = 3v + 25
Answer:
v = 5
Step-by-step explanation:
Collect like-terms:
\(8v = 3v + 25\)
\(8v - 3v = 25\)
\(5v = 25\)
Divide both sides by 5 to make v the subject:
\(v = 5\)
The winery sold 81 cases of wine this week. If twice
as many red cases were sold than white, how many
white cases were sold this week?
A. 32 cases
B. 61 cases
C. 27 cases
D. 54 cases
Answer:
Option (C)
Step-by-step explanation:
Let the red cases sold = r
and the number of white cases sold = w
Total number of cases sold by the winery = 81
r + w = 81 -------(1)
If number of red cases sold is twice of white cases sold,
r = 2w ------- (2)
By substituting the value of r from equation (2) to equation (1),
2w + w = 81
3w = 81
w = 27 cases
From equation (1),
r + 27 = 81
r = 54 cases
Therefore, number of white cases sold are 27 cases
Option (C) is he answer.
HELP PLEASE QUICKLY!!!!!!!!
The measure of angle A is 63°, the measure of side b is 22.34 feet and the measure of side a is 37.57 feet.
From the given triangle ABC,
∠A+∠B+∠C=180° (Angle sum property of a triangle)
∠A+32°+85°=180°
∠A+117°=180°
∠A=180°-117°
∠A=63°
We know that, the formula for sine rule is sinA/a=sinB/b=sinC/c
Here, sin63°/a = sin32°/b = sin85°/42
sin63°/a = sin32°/b = 0.9961/42
sin32°/b = 0.9961/42 and sin63°/a = 0.9961/42
0.5299/b = 0.9961/42
0.9961b=22.2558
b=22.2558/0.9961
b=22.34 feet
sin63°/a = 0.9961/42
0.8910/a = 0.9961/42
0.9961a=37.422
a=37.422/0.9961
a=37.57 feet
Therefore, the measure of angle A is 63°, the measure of side b is 22.34 feet and the measure of side a is 37.57 feet.
Learn more about the sine rule here:
https://brainly.com/question/22288720.
#SPJ1
need help fast, here is screenshot.
Answer:
37y +3?
Step-by-step explanation:
L×B=Area
(7y+1)(2y+3)
According to the given figure ,
Length of rectangle = 7y+1Breadth of the rectangle = 2y+3Formula to find the area of a rectangle is given by -
\( \:\:\:\:\:\:\star\small \underline{ \boxed{ \sf{ \pmb{Area_{(rectangle)} = Length \times Breadth }}}}\\\)
On substituting the values-
\( \:\:\:\:\:\:\longrightarrow \sf { Area_{(rectangle)}= \bigg(7y+1\bigg)\times \bigg(2y+3\bigg)}\\\)
\( \:\:\:\:\:\:\longrightarrow \sf { Area_{(rectangle)} = \bigg ( 14y^2+21y+2y+3\bigg)}\\\)
\( \:\:\:\:\:\:\longrightarrow \sf { Area_{(rectangle)} = 14y^2+23y +3}\\\)
\( \:\:\:\:\:\:\longrightarrow \boxed{ \tt{ \pmb{ \red{Area_{(rectangle)}=\underline{14y^2+23y +3}}}}}\\\)
\( \\ \therefore \underline{ \cal{ \pmb{Correct \:option \: is \: \frak{\purple{ C)\:\underline{14y^2+23y +3 }}. }}}}\\\)
PLEASE HELP ASAP!! WILL GIVE BRAINLIEST
A regular polygon has 12 sides. If one of its angles measures (8h − 30)°, what is the value of h?
h = 10.75
h = 18.75
h = 20.25
h = 22.5
Answer: h = 22.5
Step-by-step explanation:
Total angle area of a 12 sided polygon is 1800
1. One angle would be 1800/12= 150
8h - 30 = 1502. Add 30 one each side to cancel out and only leave 8h.
8h = 1803. To get rid of the 8 we divide the the other side by 8.
h = 22.5The answer is 22.5
Answer: D 22.5 i got it right on the exam
Step-by-step explanation:
Harper is starting a new T-shirt printing business. She purchases plain T-shirts for $5 each and spends $150 for printing equipment. She decides to sell printed shirts for $10 each. How many T-shirts does Harper need to sell so that the amount of money she spends to start her business and the amount of money she earns are the same?
Using algebraic expression, She needs to sell 150 / 5 = 30 T-shirts.
What is an Algebraic Expression?An algebraic expression is when we use numbers and words in solving a particular mathematical question. For example, the expression 2x + 3y is an algebraic expression, where x and y are variables.
Harper's fixed costs for starting the business are $150.
She earns $10 for each T-shirt sold, and she spends $5 on each T-shirt she buys.
So, her profit is $10 - $5 = $5 per T-shirt.
To break even, Harper needs to earn enough money from selling T-shirts to cover her fixed costs of $150.
Therefore, she needs to sell 150 / 5 = 30 T-shirts.
Learn more about Algebraic Expression at:https://brainly.com/question/4344214
#SPJ1
What is sixteen ninths minus five Ninths in a number bound
Answer:
i dont know what a number bound is but
16*9 - 5*9 = 144 - 45 = 99
Hope this helped and brainliest please
Answer:
1 2/9
Step-by-step explanation:
\(\frac{16}{9} -\frac{5}{9} =\frac{11}{9} \\\)
\(\frac{11}{9} = 1\frac{2}{9} \\\)
I think this is what the question is asking for
Point B is the midpoint of point C and D. If CB is 14in, what is CD and BD?
Answer:
\(BD = 14\ in\)
\(CD = 28\ in\)
Step-by-step explanation:
Given
CB = 14in
B as midpoint
Required
Determine CD and BD
Since B is the midpoint, then the two line segments (CB and BD), we have the following relationships:
\(CB = BD\)
\(CD = CB + BD\)
Reorder the first equation
\(BD = CB\)
Substitute 14 for CB
\(BD = 14\ in\)
Taking the second equation into consideration
\(CD = CB + BD\)
\(CD = 14 + 14\)
\(CD = 28\ in\)
Anyone good at trigonometry?
I need a tutor or something cause I suck
Answer:
I'll help if you need it.
Step-by-step explanation:
Which function represents a reflection of f(x) = 3/8 (4)^x across the y-axis?
A function that represents a reflection of \(f(x) = \frac{3}{8} (4)^x\) across the y-axis include the following: D. \(g(x) = \frac{3}{8} (4)^{-x}\).
What is a reflection over the y-axis?In Mathematics and Geometry, a reflection over or across the y-axis or line x = 0 is represented and modeled by this transformation rule (x, y) → (-x, y).
This ultimately implies that, a reflection over or across the y-axis or line x = 0 would maintain the same y-coordinate while the sign of the x-coordinate changes from positive to negative or negative to positive.
By applying a reflection over the y-axis to the parent exponential function, we would have the following transformed exponential function:
(x, y) → (-x, y).
\(f(x) = \frac{3}{8} (4)^x\) → \(g(x) = \frac{3}{8} (4)^{-x}\)
Read more on reflection here: https://brainly.com/question/3399394
#SPJ1
Graph the inequality in the coordinate plane. y<6
Answer:
Simpler equations and inequalities as such could be typed into an online graphing calculator such as Desmos! Remember this because you'll need it for future harder math classes :)
Step-by-step explanation:
) In a geometric progression, the sum of the first two terms is equal to 16. The sum to infinity is equal to 25. Find the possible values of the first term.
There are no possible real values for the first term 'a' that satisfy both equations.
Let's denote the first term of the geometric progression as 'a' and the common ratio as 'r'.
The sum of the first two terms can be expressed as:
a + ar = 16
To find the sum to infinity, we can use the formula:
Sum to infinity = a / (1 - r)
Given that the sum to infinity is 25, we have:
25 = a / (1 - r)
We now have two equations:
a + ar = 16
a / (1 - r) = 25
We can solve these equations simultaneously to find the possible values of 'a'.
From the first equation, we can factor out 'a' to get:
a(1 + r) = 16
Dividing both sides of the second equation by 25, we have:
a / (1 - r) = 1
We can rearrange this equation to get:
a = 1 - r
Substituting this expression for 'a' in the first equation, we get:
(1 - r)(1 + r) = 16
Expanding the equation, we have:
1 - r^2 = 16
Rearranging the terms, we get:
r^2 = -15
Since we are dealing with a geometric progression, the common ratio 'r' must be a real number. However, we observe that r^2 = -15 has no real solutions. Therefore, there are no possible real values for the first term 'a' that satisfy both equations.
for such more question on real value
https://brainly.com/question/27371101
#SPJ8
.
The net below shows the dimensions of Michelle’s living room. She is going to put wallpaper on the living room walls.
What is the difference, in square yards, between the total and lateral surface areas of the room?
Answer:4.2 x 6 = 25.2
4.2 x 3.5 = 14.7
4.2 x 3.5 = 14.7
Step-by-step explanation:
I multiplyed
Trong tập hợp các số thực ℝ cho quan hệ S1, S2
a, b ℝ, a S1 b a
2
b
2
a, b ℝ, a S2 b a
3
b
3Quan hệ nào là quan hệ thứ tự ? Quan hệ nào là quan hệ thứ tự toàn phần ?
Answer:
Step-by-step explanation:
#8 i
A parabola with its vertex at (2,5) and its axis of symmetry parallel to the y-axis passes through point (22,365). Write an equation
of the parabola. Then find the value of y when x = 12.
An equation is
Elio Mendoza
When x = 12, y =
Evaluate without a calculator. If a real answer does not
a)
\(\log_3(27)=\log_3(3^3)=3\)Answer: 3
b)
\(\log_3(9)=\log_3(3^2)=2\)Answer: 2
c)
\(\log_5(1)=0\)Answer: 0
d)
\(\log_5(\frac{1}{25})=\log_5(5^{-2})=-2\)Answer: -2