Answer:
The planet's speed is 18,950,000 km per 940 days
which equals
20,159.5744680851 kilometers per day
Dividing that by 24 gives us the planetary speed in km / hour which is
839.982269503546 kilometers per hour.
I have no idea what 3sf means so I can't answer that.
Step-by-step explanation:
please help me with this question and I will give you brainlist!
Answer:
6.3 ft
Step-by-step explanation:
To find:-
The height of shadow casted by the tree.Answer:-
We are here given that 40ft tree casts a shadow of 12foot . We are interested in finding out the height of the shadow casted by a 21ft tree .
Here we can use Unitary Method to find out the height of the shadow as ,
A 40ft tree casts a shadow of 12ft .
A 1ft tree would cast a shadow of 12/40ft .
A 21 ft tree would cast a shadow of 12/40*21 = 6.3 ft
Hence the height of shadow casted by a 21ft tree is 6.3ft .
pressure to increase profitability and improve operational efficiencies often drives organizations to implement new approaches and technology.
O TRUE
O FALSE
TRUE. The pressure to increase profitability and improve operational efficiencies is a common driver for organizations to implement new approaches and technology.
The pressure to increase profitability and improve operational efficiencies often drives organizations to implement new approaches and technology. By adopting innovative methods and leveraging technology, companies can streamline processes, reduce costs, and enhance their overall performance, contributing to higher profits and a competitive advantage in the market. The pressure to increase profitability and improve operational efficiencies is a common driver for organizations to implement new approaches and technology. By adopting innovative methods and leveraging technology, companies can streamline processes.
To know more about technology visit:
https://brainly.com/question/9171028
#SPJ11
Andrew thought he could score 25 points on an arcade game, but he only scored 17. What was Andrew's percent error? Prediction - Actual Hint: Percent error- * 100 Actual Round to the nearest percent. [?]%
Answer:
47%
Step-by-step explanation:
% error = ( (theoretical(correct) – experimental(prediction)) / theoretical(correct) ) × 100%.
% error = |17 – 25| / 17 × 100% =
% error = (8 / 17 × 100)%
% error = (800 / 17)%
% error = (47.0588235294..)%
% error ≈ 47%
As the diameter (d) of a circle increases in size, the circumference (C)
increases Likewise, as the diameter decreases in size, so does the circumference,
The constant of variation between Cand dist. Describe the kind of variation
between eireumference and diameter Write the equation.
In circle I, IJ=4 and mJIK∠=90∘ Find the area of shaded sector. Express your answer as a fraction times π.
The area of the shaded sector is 4π square units.
To find the area of the shaded sector, we need to calculate the central angle formed by the sector. In this case, we are given that the angle JIK is 90 degrees, which means it forms a quarter of a full circle.
Since a full circle has 360 degrees, the central angle of the shaded sector is 90 degrees.
Next, we need to determine the radius of the circle. The line segment IJ represents the radius of the circle, and it is given as 4 units.
The formula to calculate the area of a sector is A = (θ/360) * π * r², where θ is the central angle and r is the radius of the circle.
Plugging in the values, we have A = (90/360) * π * 4².
Simplifying, A = (1/4) * π * 16.
Further simplifying, A = (1/4) * π * 16.
Canceling out the common factors, A = π * 4.
Hence, the area of the shaded sector is 4π square units.
Therefore, the area of the shaded sector, expressed as a fraction times π, is 4π/1.
In summary, the area of the shaded sector is 4π square units, or 4π/1 when expressed as a fraction times π.
For more such questions on area, click on:
https://brainly.com/question/25292087
#SPJ8
Sales tax is calculated as a percentage of the sales price. If sales tax is 6%, what is the sales tax on clothing that costs $180? (3 points)
a
$6.00
b
$9.80
c
$10.80
d
$18.60
Answer:
it is c $10.80
The sales tax on clothing that costs $180 is $10.80 with 6% sales tax. The correct answer is option c.
Given that:
The cost of cloth is $180.
Sales tax is 6%.
To calculate the sales tax on clothing that costs $180 at a rate of 6%, follow these steps:
Convert the sales tax rate to a decimal: 6% = 6/100 = 0.06
Sales tax can be calculated by using the formula given below:
Sales tax = Cost of clothing × Tax rate
Multiply the clothing cost by the sales tax rate to find the sales tax amount:
Sales tax = Cost of clothing × Tax rate
Sales tax = $180 × 0.06 = $10.80
Hence, the required value is $10.80. The correct answer is option c.
Learn more about Tax here:
https://brainly.com/question/23347326
#SPJ6
Ralf and Susie share $57 in the ratio 2:1.
(a) Calculate the amount Ralf receives.
Answer:
.Total ratio 2+1 = 3Ralf 2/3 × 57Divide 57 by 3( 2 × 19)= 38....Ralf recieves $ 38Answer:
Raff = 38
Suzie = 19
Step-by-step explanation:
Raff gets 2x
Suzie gets x
2x + x = 57 dollars
3x = 57 dollars
x = 19 dollars
2x = 38 dollars
MATH URGENT! DUE NOW!
10. Subtract 5/(t^2)-4/(t+1)
a.) 5t+2/t^2(t+1)
b.) 5t+1-4t^2/t^2(t+1)
c.) 1/t^2(t+1)
d.) 5+5t-4t^2/t^2(t+1)***
***=my answer. Before i submit, i wanna know if correct. 20 pts and brainly
Answer:
b.) 5t+1-4t^2/t^2(t+1)
Step-by-step explanation:
what is the midsegment of a triangle? the triangle midsegment is a segment joining the of two sides of a trinagle. what is the triangle midsegment theorem? if a segment joins the of two sides of a triangle, then the segment is to the third side and as long.
The triangle midsegment is a very important concept in geometry, and the triangle midsegment theorem states that the midsegment of a triangle is parallel to the third side and has a length equal to half of the length of the third side
The triangle midsegment theorem states that the midsegment of a triangle is parallel to the third side of the triangle and has a length that is equal to half of the length of the third side.
In this explanation, we will define the midsegment of a triangle and explain the triangle midsegment theorem in more detail.
To begin, let's consider a triangle ABC with midpoints D and E on sides AB and AC respectively. The segment DE is the midsegment of triangle ABC.
According to the triangle midsegment theorem, the length of DE is equal to half the length of the third side of the triangle, BC. Mathematically, this can be represented as follows:
DE = BC/2
In addition to the length, the midsegment of a triangle is also parallel to the third side. This means that if we extend the midsegment, it will eventually intersect the third side of the triangle.
The triangle midsegment theorem states that the midsegment of a triangle is parallel to the third side and also has the same length as half of the third side.
To know more about triangle here.
https://brainly.com/question/8587906
#SPJ4
im in 7th can i get help on these quetion
Answer:
so what is the question pls brief it up
Answer:
CAN U CUMMM?
Step-by-step explanation:
the diagram below QR is parallel to NO. QN =4.5 , RO = 5.6, and PQ=7.5. find the length of PR.
The length of |PR| as shown in the diagram is 9.3.
What is length?Length is the distance between two points.
To calculate the length of PR, we use the formula below
Note:
ΔPQR is similar to ΔPNOFormula:
LinePQ/LinePN = LinePR/LinePO.................... Equation 1From the question,
Given:
Let |PR| = y|PQ| = 7.5|PN| = |PQ|+|QN| = 7.5+4.5 = 12|PO| = |PR|+|RO| = y+5.6Substitute these values into equation 1 and solve for y
7.5/12 = y/(y+5.6)7.5(y+5.6) = 12y7.5y+42 = 12y12y-7.5 = 424.5y = 42y = 42/4.5y = 9.3Hence, |PR| = 9.3
Learn more about length here: https://brainly.com/question/28108430
#SPJ1
The optimal amount of x1, x2, P1, P2 and income are given by the
following:
x1= 21/ 7p1 x2= 51 / 7p2
The original prices are: P1=10 P2=5 The original income is: I
=4189 The new price of P1 is the foll
The total change in the consumed quantity of x₁ as per given price and income is equal to 213.
x₁ = (21/7)P₁
x₂ = (51/7)P₂
P₁ = 10
P₂ = 5
P₁' = 81
To calculate the total change in the quantity consumed of x₁ when the price of P₁ changes from P₁ to P₁',
The difference between the quantities consumed at the original price and the new price.
Let's calculate the quantity consumed at the original price,
x₁ orig
= (21/7)P₁
= (21/7) × 10
= 30
x₂ orig
= (51/7)P₂
= (51/7) × 5
= 36.4286 (approximated to 4 decimal places)
Now, let's calculate the quantity consumed at the new price,
x₁ new
= (21/7)P1'
= (21/7) × 81
= 243
x₂ new
= (51/7)P2
= (51/7) × 5
= 36.4286
The total change in the quantity consumed of x₁ can be calculated as the difference between the new quantity and the original quantity,
Change in x₁
= x₁ new - x₁ original
= 243 - 30
= 213
Therefore, the total change in the quantity consumed of x₁ is 213.
learn more about change here
brainly.com/question/32782775
#SPJ4
The above question is incomplete, the complete question is:
The optimal amount of x1, x2, P1, P2 and income are given by the following:
x1= 21/ 7p1 x2= 51 / 7p2
The original prices are: P1=10 P2=5 The original income is: I =4189 The new price of P1 is the following: P1'=81 Assume that the price of x1 has changed from P1 to P1'. What is the total change in the quantity consumed of x1?
Please answer step by step
mona is have 6 friends and each person wants 5 cookies and 12 cookies are in 1 box how many boxes such we get
Answer:
3 boxes I believe
Step-by-step explanation:
6 friends want 5 cookies each
6×5=30
if there are 12 cookies in each box then 2 boxes would be 24 cookies and 3 boxes would be 36 cookies. there would be left over cookies but there would be enough for monas friends
At a basketball game, a team made 55 successful shots. They were a combination of 1- and 2-point shots. The team scored 91 points in all. Write and solve a system of equations to find the number of each type of shot.
Answer:
We can use a system of equations to solve this problem. Let x be the number of 1-point shots and y be the number of 2-point shots.
The first equation represents the total number of shots taken:
x + y = 55 (1)
The second equation represents the total number of points scored:
x + 2y = 91 (2)
To solve for x and y, we can use the first equation to substitute for one of the variables in the second equation. Using (1) to substitute for x in (2):
y = 55 - x
Then substitute this value of y in equation (1)
x + (55 - x) = 55
Solving for x, we get:
x = 20
So the team made 20 1-point shots and 35 2-point shots.
Answer:
There are:
19 1-point shots
36 2-point shots
Step-by-step explanation:
Solve for the system of equations. The first equation will give you the value based on the total amount of points, while the other equation will be based on the amount of shots in total:
It is given that the team scores 91 points in all, and that they are all 1- and 2- point shots (no 3 pointers). Set the equation. Let x = 1-point shots, and y = 2-point shots:
x + y = 55
1x + 2y = 91
First, isolate the variable, y, in the first equation. Subtract x from both sides of the equation:
y + x = 55
y + x (-x) = 55 (-x)
y = 55 - x
Next, plug in 55 - x for y in the second equation:
x + 2y = 91
x + 2(55 - x) = 91
Then, simplify. First, distribute 2 to all terms within the parenthesis:
2(55 - x)
= (2 * 55) - (2 * x)
= 110 - 2x
x + 110 - 2x = 91
First, combine like terms. Like terms are terms that share the same amount of the same variable:
(x - 2x) + 110 = 91
-x + 110 = 91
Then, isolate the variable, x. First, subtract 110 from both sides of the equation:
-x + 110 (-110) = 91 (-110)
-x = 91 - 110
-x = -19
Isolate the variable, x, completely, by dividing -1 from both sides of the equation:
(-x)/-1 = (-19)/-1
x = -19/(-1)
x = 19
~
Plug in 19 for x in one of the given equations in the system of equations:
x + y = 55
19 + y = 55
Isolate the variable, y, by subtracting 19 from both sides of the equation:
y + 19 = 55
y + 19 (-19) = 55 (-19)
y = 55 - 19
y = 36
~
There are 19 1-point shots & 36 2-point shots
Learn more about solving for system of equations, here:
https://brainly.com/question/13997560
i need help will give brainliest if correct.
Answer:
The answer I got was 2. hope that helps.
Step-by-step explanation:
i don’t understand how to answer this :)
Answer:
120°
Step-by-step explanation:
Answer:
I think it's a clockwise rotational symmetry from the centre of the circle.
Determine whether a triangle with the given side lengths is a right triangle. side lengths right triangle not a right triangle not enough information 5, 13, 14 18, 24, 30 8, 15, 17 22, 29, 36
Answer:
It is a right triangle
Step-by-step explanation:
sunset lake is stocked with 2500 rainbow trout and after 1 year the population has grown to 7050. assuming logistic growth with a carrying capacity of 25000, find the growth constant , and determine when the population will increase to 12900.
The growth constant is 0.69 and the population will increase to 12900 after approximately 3.7 years.
We have, Sunset Lake is stocked with 2500 rainbow trout and after 1 year the population has grown to 7050. Assuming logistic growth with a carrying capacity of 25000,
The logistic growth model is given by the equation
dN/dt=rN[(K-N)/K]
where, dN/dt = rate of change of population with respect to time,
N = population size at time t,
r = intrinsic rate of natural increase (growth constant),
K = carrying capacity.
The population size, "N" after 1 year = 7050
The initial population, "N₀" = 2500
The carrying capacity, K = 25000
We can use the following formula to find the value of the growth constant,
r = 2.303/t{ln(N_t/N₀) }........... (1)
Where, t = time taken for the population to increase from N_0 to N_t= 1 year (given)
Substituting the given values in equation (1), we get
r = 2.303/1 ln(7050/2500) ⇒ 0.688 ≈ 0.69
The value of the growth constant is 0.69.
Now, we can use the logistic growth equation to find the time required for the population to reach 12900.
dN/dt=rN[(K-N)/K]
Given, N₀ = 2500 and K = 25000
Differentiating both sides with respect to t,
dN/dt = rN[(K-N)/K] + Ndr/dt
Substituting the values of N, r, and K in the above equation, we get,
dN/dt= 0.69N[(25000-N)/25000] + N{dN/dt}
Let the population N become 12900 at time t = t₁
Therefore, at time t = 0, the population N₀ = 2500
Also, at time t = 1, the population N₁ = 7050
Substituting these values in the above equation, we get,
dN/dt= 0.69N[(25000-N)/25000] + N₁
dN/dt= 0.69(2500)[(25000-2500)/25000] + N₁
Solving for N₁, we get, N₁ = 7825
Substituting N₁ = 7825 in the above equation,
dN/dt= 0.69(7825)[(25000-7825)/25000] + N₁
dN/dt= 3263.25/1.69 ⇒ 1930.4
Now, to find t1, we can use the following formula;
ln[(K-N₁)/(K-N₀)] = rt₁
Substituting the given values, we get,
ln[(25000-12900)/(25000-2500)] = 0.69t₁
On solving for t₁, we get;
t₁ = ln[(1575/22500)]/0.69 ≈ 3.7 years
Hence, the population will increase to 12900 after approximately 3.7 years.
To know more about the "logistic growth model": https://brainly.com/question/15697805
#SPJ11
simplify the numerical expression- cant write it out so i'm using a pic
Answer:
-38
Step-by-step explanation:
4-(3^4-6^2)+2(3)÷2
=> 4 - (81-36) + 2(3) ÷ 2
=> 4 - 45 + 2(3)÷2
=> 4 - 45 + 6÷2
=> 4 - 45 + 3
=> -41 + 3
=> - 38
hope this helps :)
Which two operations are needed to write the expression that represents "five less than the quotient of a number and
three"?
multiplication and subtraction
O division and subtraction
O multiplication and addition
O division and addition
The two operations needed to write the expression are division and subtraction.
What is Subtraction?Subtraction can be done for any numbers or algebraic expressions. It is the process of taking out certain value from a given amount of number.
The process of subtraction can also be termed as finding difference.
The given expression in words is "five less than the quotient of a number and three".
The expression can be mathematically written as for a given number x is x/3 - 5.
Here a number x is divided by 3 at first.
So the first operation is division.
The quotient of this has been subtracted by 5.
So the next operation is division.
Hence the two operations used here are subtraction and division.
To learn more about Division, click on the link :
https://brainly.com/question/21416852
#SPJ2
The volume of a cylinder closed at the one end is 1056cm cube. If its height is 21cm, and the radius is 4, find the total surface area
Answer:
578 cm^2
Step-by-step explanation:
The surface area is given by one circle of radius 4 (the other is missing!), plus a "rectangle" (the lateral surface) of sides 21 and \(2\pi \times 4\) (the length of the circumference at the base). Adding them up we get:\(\pi \times4^2 + 21\times 2\pi\times4 = 184\pi \approx 578 cm^2\)
2. The function ln(x)2 is increasing. If we wish to estimate √ In (2) In(x) dx to within an accuracy of .01 using upper and lower sums for a uniform partition of the interval [1, e], so that S- S < 0.01, into how many subintervals must we partition [1, e]? (You may use the approximation e≈ 2.718.)
To estimate the integral √(ln(2)) ln(x) dx within an accuracy of 0.01 using upper and lower sums for a uniform partition of the interval [1, e], we need to divide the interval into at least n subintervals. The answer is obtained by finding the minimum value of n that satisfies the given accuracy condition.
We start by determining the interval [1, e], where e is approximately 2.718. The function ln(x)^2 is increasing, meaning that its values increase as x increases. To estimate the integral, we use upper and lower sums with a uniform partition. In this case, the width of each subinterval is (e - 1)/n, where n is the number of subintervals.
To find the minimum value of n that ensures the accuracy condition S - S < 0.01, we need to evaluate the difference between the upper sum (S) and the lower sum (S) for the given partition. The upper sum is the sum of the maximum values of the function within each subinterval, while the lower sum is the sum of the minimum values.
Since ln(x)^2 is increasing, the maximum value of ln(x)^2 within each subinterval occurs at the right endpoint. Therefore, the upper sum can be calculated as the sum of ln(e)^2, ln(e - (e - 1)/n)^2, ln(e - 2(e - 1)/n)^2, and so on, up to ln(e - (n - 1)(e - 1)/n)^2.
Similarly, the minimum value of ln(x)^2 within each subinterval occurs at the left endpoint. Therefore, the lower sum can be calculated as the sum of ln(1)^2, ln(1 + (e - 1)/n)^2, ln(1 + 2(e - 1)/n)^2, and so on, up to ln(1 + (n - 1)(e - 1)/n)^2.
We need to find the minimum value of n such that the difference between the upper sum and the lower sum is less than 0.01. This can be done by iteratively increasing the value of n until the condition is satisfied. Once the minimum value of n is determined, we have the required number of subintervals for the given accuracy.
Learn more about integral here : brainly.com/question/31059545
#SPJ11
When the polynomial P(x) = x3
+ 3x2
– 2Ax + 3,
where A is constant, is divided by x2
+ 1 and
remainder is –5x, then A is
Since this equation must hold for all values of x, we can substitute x = i and x = -i to get two equations: 2A + 3i = -5i=> 2A - 3i = 5i=> A = -3/2Therefore, A is equal to -3/2.
what are polynomials?A polynomial is a mathematical statement with coefficients and uncertainty that uses only additions, subtractions, multiplications, and powers of positive integer variables. There is just one indeterminate x polynomial identified by the formula x2 4x + 7. The term "polynomial" refers to an expression in mathematics that consists of variables (sometimes referred to as "indeterminates") and coefficients that may be added, subtracted, multiplied, and raised to negative integer powers of non-variables. A polynomial is an algebraic expression having variables and coefficients. Only addition, subtraction, multiplication, and non-negative integer exponents are permitted in expressions. The word for these expressions is polynomials.
To find A, we need to perform polynomial long division of P(x) by \(x^2 + 1\)and get the remainder equal to -5x.
x
--------------
\(x^2 + 1 | x^3 + 3x^2 - 2Ax + 3\)
\(x^3 + 0x^2 + x\)
--------------
\(3x^2 - 2Ax\)
\(3x^2 + 0x - 3i\)
------------
\(2Ax + 3i\)
\(2Ax + 0x - 2iA\)
-----------
\(3i + 2iA\)
The remainder of the division is (2A + 3i) when the divisor is \(x^2 + 1\). We know that this remainder is equal to -5x, so we can set up the equation:
2A + 3i = -5x
Since this equation must hold for all values of x, we can substitute x = i and x = -i to get two equations:
2A + 3i = -5i
2A - 3i = 5i
A = -3/2
Therefore, A is equal to -3/2.
To know more about polynomials visit:
https://brainly.com/question/11536910
#SPJ1
How many triangles can ASA have?
We have explained the ASA rule of congruency of the triangle
What is an ASA congruency of triangles?
ASA Congruence. Angle-Side-Angle. If two angles in one triangle are congruent to two angles of a second triangle, and also if the included sides are congruent, then the triangles are congruent.
If a triangle PQR is congruent to a triangle ABC, we write it as ∆ PQR ≅ ∆ ABC.
Note that when ∆ PQR ≅ ∆ ABC, then sides of ∆ PQR fall on corresponding equal sides of ∆ ABC and so is the case for the angles.
This means that PQ covers AB, QR covers BC, and RP covers CA;
∠P, ∠Q, and ∠R cover ∠A, ∠B, and ∠C respectively.
Also, between the vertices, there is an existence of one-one correspondence.
That is, P corresponds to A, Q corresponds to B, R corresponds to C and it is written as
P↔A, Q↔B, R↔C
Under this condition, the correspondence ∆ PQR ≅ ∆ ABC is true but is not correct for the correspondence ∆QRP ≅ ∆ ABC.
Hence, we have explained the ASA rule of congruency of the triangle
To learn more about the ASA rule of congruency of the triangle, visit:
https://brainly.com/question/3168048
#SPJ4
A can lid has a radius of 3 in.
What is the area of the can lid?
9π in2
3π in2
9 in2
3 in2
Answer:
9 * pi inches squared
Step-by-step explanation:
Two balls are to be pulled from a vase that contains 7 red balls, 9 green balls, and 2 black balls. After the first ball is drawn, it is
not replaced. What is the probability that two red balls are chosen from the vase?
The probability that two red balls are chosen from the vase would be = 1/9
What is probability?Probability is defined as the concept that proves that an event may occur or not.
The number of red balls = 7
The number of black balls = 2
The number of green balls = 9
The total number of balls in the vase = 18
The probability of getting 2 red balls = 2/18 = 1/9
Learn more about probability here:
https://brainly.com/question/24756209
#SPJ1
Identify the mystery number. Explain your process for figuring it out.
We know that the value x we are looking for is even, and is greater than 6 and less than 10.
We start with the condition of being even.
Then x can be 2, 4, 6, 8, 10, 12, 14...
If we know that is greater than 6, we can eliminate 2, 4 and 6 from the list.
x can be: 8, 10, 12, 14...
If we know that x is less than 10, we can eliminate 10 and all the values above 10.
Then, x is 8, as it is the only value left in the list of possible values.
Answer: the number is 8.
the mean monthly electric bill for 71 residents of the local apartment complex is $62. what is the best point estimate for the mean monthly electric bill for all residents of the local apartment complex?
If the mean monthly electric bill for 71 residents of the local apartment is $62 , then the best point estimate is $62 .
In the question ,
it is given that ,
the number of residents in the local apartment complex is = 71
the mean electric bill for the 71 residents = $62 ;
we know that the sample mean is itself called as the best point estimate ;
So , best point estimate for mean monthly electric bill for all residents of local apartment complex will be = mean monthly bill for 71 residents of local apartment complex which is given as $62 .
Therefore , the best point estimate is $62 .
Learn more about Best Point Estimate here
https://brainly.com/question/19425323
#SPJ4
chapter 21: more about tests and intervals key vocabulary: p-value statistically significant alpha level significance level type i error type ii error power effect size explain what the p-value represents. what do large p-values indicate? what is meant by an alpha level? what does it mean for a result to be statistically significant? a 95% confidence interval corresponds to a two-sided hypothesis test at what alpha level? a 90% confidence interval corresponds to a one-sided hypothesis test at what alpha level?
The p-value is a statistical term that represents the probability of observing an outcome as extreme as or more extreme than the observed outcome, given that the null hypothesis is true. It is used to determine whether the null hypothesis should be rejected or accepted. If the p-value is less than the level of significance (alpha), the null hypothesis can be rejected, and the alternative hypothesis can be accepted.
Large p-values indicate that there is not enough evidence to reject the null hypothesis. A large p-value implies that the observed result is not significant, and the null hypothesis is supported.
The alpha level is a significance level that is set in advance of conducting a hypothesis test. It determines the level of evidence required to reject the null hypothesis. The alpha level is usually set at 0.05, meaning that the null hypothesis can be rejected if the p-value is less than 0.05.
A result is statistically significant if it is unlikely to have occurred by chance. In other words, if the p-value is less than or equal to the alpha level, the result is considered statistically significant, and the null hypothesis can be rejected.
A 95% confidence interval corresponds to a two-sided hypothesis test at an alpha level of 0.05. This means that the null hypothesis can be rejected if the observed outcome falls outside the confidence interval with a probability of 0.05 or less.
A 90% confidence interval corresponds to a one-sided hypothesis test at an alpha level of 0.1. This means that the null hypothesis can be rejected if the observed outcome falls outside the confidence interval with a probability of 0.1 or less.
To know more about probability refer here:
https://brainly.com/question/30034780
#SPJ11
find the exact value of sin(0) when cos(0) =3/5 and the terminal side of (0) is in quadrant 4
When the cosine of an angle (0) is 3/5 and the angle lies in quadrant 4, the exact value of the sine of that angle is -4/5.
To find the exact value of sin(0), we can utilize the Pythagorean identity, which states that \(sin^2(x) + cos^2(x) = 1,\) where x is an angle in a right triangle. Since the terminal side of the angle (0) is in quadrant 4, we know that the cosine value will be positive, and the sine value will be negative.
Given that cos(0) = 3/5, we can determine the value of sin(0) using the Pythagorean identity as follows:
\(sin^2(0) + cos^2(0) = 1\\sin^2(0) + (3/5)^2 = 1\\sin^2(0) + 9/25 = 1\\sin^2(0) = 1 - 9/25\\sin^2(0) = 25/25 - 9/25\\sin^2(0) = 16/25\)
Taking the square root of both sides to find sin(0), we have:
sin(0) = ±√(16/25)
Since the terminal side of (0) is in quadrant 4, the y-coordinate, which represents sin(0), will be negative. Therefore, we can conclude:
sin(0) = -√(16/25)
Simplifying further, we get:
sin(0) = -4/5
Hence, the exact value of sin(0) when cos(0) = 3/5 and the terminal side of (0) is in quadrant 4 is -4/5.
For more question on cosine visit:
https://brainly.com/question/30766161
#SPJ8
Note the correct and the complete question is
Q- Find the exact value of sin(0) when cos(0) =3/5 and the terminal side of (0) is in quadrant 4 ?