97 percent of 245m what is the answer
Answer:
multiply them
Step-by-step explanation:
trust me on this one i love using that hack
Consider the following inductive definition of a version of Ackermann's function:
A(m,n)=⎧⎩⎨⎪⎪⎪⎪2n if m=00 if m≥1 and n=02 if m≥1 and n=1A(m−1,A(m,n−1)) if m≥1 and n≥2A(m,n)={2n if m=00 if m≥1 and n=02 if m≥1 and n=1A(m−1,A(m,n−1)) if m≥1 and n≥2
Find the following values of the Ackermann's function:
A(2,1)=A(2,1)= 2 A(1,2)=A(1,2)= 6 A(1,0)=A(1,0)= 4 A(0,1)=A(0,1)= 4 A(3,0)=A(3,0)= 4 A(3,3)=A(3,3)=
According to the given inductive definition of Ackermann's function, we can find the values of the function as follows:
A(2,1) = A(1, A(2,0)) = A(1, 1) = A(0, A(1,0)) = A(0, 2) = 2
A(1,2) = A(0, A(1,1)) = A(0, A(0, A(1,0))) = A(0, A(0, 2)) = A(0, 4) = 6
A(1,0) = A(0, A(1,-1)) = A(0, A(0, 0)) = A(0, 1) = 2^1 = 2
A(0,1) = 2^1 = 2
A(3,0) = A(2, A(3,-1)) = A(2, A(2, A(3,-2))) = A(2, A(2, A(2, A(3,-3)))) = A(2, A(2, A(2, 1))) = A(2, A(2, 2)) = A(2, 2^2) = A(2, 4) = 2^4 = 16
A(3,3) = A(2, A(3,2)) = A(2, A(2, A(3,1))) = A(2, A(2, A(2, A(3,0)))) = A(2, A(2, A(2, 1))) = A(2, A(2, 2)) = A(2, 2^2) = A(2, 4) = 2^4 = 16
Therefore, the values of Ackermann's function are:
A(2,1) = 2
A(1,2) = 6
A(1,0) = 2
A(0,1) = 2
A(3,0) = 16
A(3,3) = 16
To know more about Ackermann's function visit:
https://brainly.com/question/14868559
#SPJ11
If 28% of students in college are near-sighted, the probability that in a randomly chosen group of 20 college students, exactly 4 are near-sighted is closest to.
Therefore, the probability that in a randomly chosen group of 20 college students, exactly 4 are near-sighted is closest to 0.2261.
To calculate the probability of exactly 4 out of 20 randomly chosen college students being near-sighted, we can use the binomial probability formula.
The binomial probability formula is:
\(P(X = k) = C(n, k) * p^k * (1 - p)^{({n - k)\)
Where:
P(X = k) is the probability of exactly k successes
n is the total number of trials
k is the number of successful trials
p is the probability of success in a single trial
(1 - p) is the probability of failure in a single trial
C(n, k) is the binomial coefficient, also known as "n choose k" or the number of ways to choose k successes out of n trials.
Given:
Probability of being near-sighted (p) = 0.28
Number of trials (n) = 20
Number of successful trials (k) = 4
Using these values, we can calculate the probability as follows:
\(P(X = 4) = C(20, 4) * (0.28)^4 * (1 - 0.28)^{(20 - 4)\)
Using a calculator or statistical software, the calculation yields:
P(X = 4) ≈ 0.2261
To know more about probability,
https://brainly.com/question/26379781
#SPJ11
Find the equation of the parabola described below. Find the two points that define the latus rectum, and graph the equation. Vertex at (3,−6); focus at (3,−9) The equation of the parabola is (Type an equation. Use integers or fractions for any numbers in the equation
The equation of the parabola with vertex (3,-6) and focus (3,-9) is (y+6)² = -4(-3)(x-3).
To find this equation, we first recognize that the axis of symmetry is vertical, since the x-coordinates of the vertex and focus are the same. Therefore, the equation has the form (y-k)² = 4p(x-h), where (h,k) is the vertex and p is the distance from the vertex to the focus.
We can use the distance formula to find that p = 3, since the focus is 3 units below the vertex. Therefore, the equation becomes (y+6)² = 4(3)(x-3), which simplifies to (y+6)² = -12(x-3).
To find the points that define the latus rectum, we can use the formula 4p, which gives us 12. This means that the latus rectum is 12 units long and is perpendicular to the axis of symmetry. Since the axis of symmetry is vertical, the latus rectum is horizontal. We can use the vertex and the value of p to find the two points that define the latus rectum as (3+p,-6) and (3-p,-6), which are (6,-6) and (0,-6), respectively.
The graph of the parabola is a downward-facing curve that opens to the left, with the vertex at (3,-6) and the focus at (3,-9). The latus rectum is a horizontal line segment that passes through the vertex and is 12 units long, with endpoints at (6,-6) and (0,-6).
Know more about distance formula here:
https://brainly.com/question/25841655
#SPJ11
Jillian is trying for the cross country team. To make it she must run 3 1/2 miles in less than 40 minutes. will jillian make the team
Jillian will make the cross country team if she completes the 3 1/2 mile run in less than 40 minutes.
Explanation: The requirement for Jillian to make the cross country team is to run 3 1/2 miles in less than 40 minutes. To determine if she meets this requirement, we compare the time taken to complete the run with the specified time limit. If Jillian completes the run in less than 40 minutes, she will make the team. However, if she takes 40 minutes or longer, she may not meet the requirement. Without knowing Jillian's actual running time, it is not possible to determine definitively if she will make the team.
To know more about cross country team here: brainly.com/question/24502307
#SPJ11
What is the inverse of the logarithmic function
f(x) = log2x?
f –1(x) = x2
f –1(x) = 2x
f –1(x) = logx2
f –1(x) = StartFraction 1 Over log Subscript 2 Baseline x EndFraction
Answer: The inverse of the logarithmic function f(x) = log2x can be found by interchanging the roles of x and y in the function and solving for y. The steps are as follows:
Step 1: Replace f(x) with y.
y = log2x
Step 2: Interchange x and y.
x = log2y
Step 3: Solve for y.
We need to isolate y on one side of the equation. To do this, we can rewrite the equation in exponential form. Recall that the logarithmic function with base b is defined as follows:
logb(x) = y if and only if b^y = x.
Using this definition, we can rewrite the equation x = log2y as follows:
2^x = y
This means that the inverse of f(x) = log2x is given by:
f –1(x) = 2^x
Therefore, the correct answer is:
f –1(x) = 2^x.
Step-by-step explanation:
Please help I don’t understand
I need the answers to B and C please and thank you! :)
Answer:
2/9 and 4/9
Step-by-step explanation:
There are 3 * 3 = 9 possible outcomes of spinning the spinners. Out of those, there are only 2 ways to achieve a product of 6 (2 and 3 or 6 and 1) so the answer to B is 2/9. For C, there are 4 ways for the total to be greater than 10 (12, 18, 20, 30) so the answer is 4/9.
Answer:
b=2/9
c=4/9
Step-by-step explanation:
b: 2/3(there are two options you can land on that have a pair that multiplies to six)*1/3(each only has one pair)= 2/9
c: 2/3(6 or 4)*2/3(3 or 5) =4/9
please help me figureout 4y+x=8
30. In the figure below, rectangle ABCD shares CD with ACDE,
diagonal BD of the rectangle extends in a straight line
beyond D to E to create DE, and the measure of CDE is
155°.
What is the measure of ZCBD?
F. 25
G.55
H.65
J.90
K.155
The measure of angle ZCBD is 90°. Therefore, the correct option is J. 90.
To find the measure of angle ZCBD, we need to examine the given information.
From the figure, we know that angle CDE is 155°.
Since the opposite angles of a rectangle are congruent, angle BCD is also 155°.
In a rectangle, the sum of the interior angles at a vertex is always 90°.
Therefore, angle CBD is 90°.
Hence, the measure of angle ZCBD is 90°.
Therefore, the correct option is J. 90.
for such more question on measure of angle
https://brainly.com/question/25716982
#SPJ8
(4y¹²) (3y)
Please help me
what is 7/8 as a Decimal
Answer:
0.875
Step-by-step explanation:
7/8
0.875
write two equelivant ratios 11 and 4
Answer:
The answer is 8 : 22, 12:33 as they are two equelivant ratios 11 and 4
A ski resorts offers private lessons to their customers. Big time ski mountain charges $5 per hour plus $50 insurance. Powder hills charges $10 per hour plus $30 insurance. How many hours would make the cost of lessons the same for each resort?
Answer:
4 hours
Step-by-step explanation:
Big time ski mountain charges $5 per hour plus $50 insurance.
Powder hills charges $10 per hour plus $30 insurance.
Let the number of hours be x.
For big time ski mountain, it means the total cost of x hours of lesson is:
\(B=50+5(x)\\B=50+5x\)
For powder hills , it means the total cost of x hours of lesson is:
\(P=30+10(x)\\P=30+10x\\\)
We need to equate both equations to find the time that the costs would be the same.
That is :
\(50+5x=30+10x\)
Collect like terms:
\(10x-5=50-30\\5x=20\)
Divide through by 5:
\(x=\frac{20}{5} \\x=4 hours\)
It would take 4 hours for the cost of the lessons to be the same.
PLEASE MARK ME AS BRAINLIEST
the symbol μ ˆ p represents the proportion of a sample of size n, not the proportion of a sample of size n. true or false
The statement ''the symbol μ ˆ p represents the proportion of a sample of size n, not the proportion of a sample of size n.'' is false because the symbol "μ ˆ p" does not represent the proportion of a sample of size n.
In statistical notation, the symbol "μ ˆ p" typically represents the sample proportion, which is an estimate of the population proportion. The sample proportion is obtained by dividing the number of occurrences of a specific event in the sample by the sample size.
On the other hand, the population proportion, denoted by "p," represents the proportion of the entire population that exhibits a certain characteristic or has a specific attribute.
The symbol "μ ˆ p" could be a typographical error or a confusion between different symbols used in statistics. The correct symbol to represent the sample proportion is usually denoted as "p ˆ" or "p-hat." The symbol "μ" typically represents the population mean.
Therefore, it is incorrect to state that "μ ˆ p" represents the proportion of a sample of size n.
To know more about statistical notation refer here:
https://brainly.com/question/28171663#
#SPJ11
Simplify.
(–28xy) ÷ (–4)
−7xy
17ab
−17ab
7xy
If any doubt leave a comment
Find the unknown value in the pair of equivalent fractions.
3/4 = ?/100
Answer:
75.
Step-by-step explanation:
100÷4= 25
25×3= 75
75/100
Answer:
75
Step-by-step explanation:
4 x 25 = 100
3 x 25 = 75
or
100/4 = 25
25 x 3 = 75
Help me answer this question about congruent triangles. 50 points available.
Answer:
B
Step-by-step explanation:
No these triangles are not congruent.
Left triangle
Shortest side = 6 cm
Longest side = 13 cm
3rd side = unknown but < 13
Right triangle
Shortest side = 6 cm
Longest side = unknown but > 13
3rd side = 13 cm
Although the shortest side of both triangles is 6 cm, the longest side of the left triangle is 13 cm, whereas the longest side of the right triangle is unknown but will be more than 13 cm.
We do not know if any of the angles are congruent. If they were congruent, we would expect to see this marked by the same angle line(s) on each triangle.
Evaluate the following expression. (-5+ 7 x 1) - 9 x 5
Answer:
-43
Step-by-step explanation:
(-5+7*1)-9*5 ---> * is muliplication sign
(-5+7)-45 --->multiplications first
(2)-45---> next the parantheses
-43 ---> the answer!!!
Answer: -43
==================================================
Explanation:
We'll use PEMDAS here.
Focus on the stuff in the parenthesis first. We multiply 7 and 1 to get 7*1 = 7
Then we add on -5 getting -5+7 = 2
The stuff in the parenthesis turns into 2
We go from this
(-5+7*1) - 9*5
to this
2 - 9*5
From here we multiply 9 and 5 to get 45, then subtract like so
2-45 = -43
-----------------------------
So here's the step by step picture
(-5 + 7*1) - 9*5
(-5 + 7) - 9*5
(2) - 9*5
2 - 9*5
2 - 45
-43
When buying advertiing time on televiion or in magazine, advertier calculate the cot per thouand (CPM) people reached by the ad. If the cot of advertiing wa $100,000 and the reach or circulation wa 10,000,000 people, what would be the CPM? (Note: M i the Roman numeral for 1,000. )
If the cost of advertising was $100,000 and the reach or circulation was 10,000,000 people, then the CPM is $10.
Cost per thousand (CPM), which is also called cost per mille, is a marketing word used to denote the price of 1,000 advertisement prints on one web page. If a publisher of a website charges $2.00 CPM, that means an advertiser must pay $2.00 for every 1,000 prints of its ad.
The CPM is calculated by dividing the cost of the advertisement by the number of people reached and then multiplying by 1000.
Given that the cost of advertising was $100,000 and the reach was 10,000,000 people, the CPM can be calculated as follows:
CPM = ($100,000 / 10,000,000) × 1000 = $10.
So, the CPM is $10.
To know more about Cost per thousand, here
https://brainly.com/question/6448600
#SPJ4
let x1 be an iid sample from a poisson distribution with parameter λ what is a sufficient statistic for λ
a. Show the distribution of X1, X2, …., Xn given T is independent of λ, and conclude that T is sufficient for λ.
b. Show that X1 is not sufficient.
c. Show that T is sufficient using the Neyman Factorization Theorem. Identify the functions g and h of that theorem.
d. Find the MLE for λ, and show that your estimator is unbiased.
the MLE for λ is unbiased and To show that T is sufficient for λ, we need to show that the distribution of X1, X2, …, Xn given T is independent of λ. Let T = ΣXi. Then the likelihood function can be written as:
L(λ|x) = P(X1=x1, X2=x2, …, Xn=xn | T=ΣXi)
= P(X1=x1) * P(X2=x2) * … * P(Xn=xn)
since the Xi's are independent.
Using the Poisson distribution, we have P(Xi=xi) = λ^xi * exp(-λ) / xi!. Therefore,
L(λ|x) = λ^(Σxi) * exp(-nλ) / (x1! * x2! * … * xn!)
Since the likelihood function can be expressed as a function of T = ΣXi and a function that does not depend on λ, the factorization theorem implies that T is sufficient for λ.
b. To show that X1 is not sufficient for λ, we need to find two different sets of data that have the same value of X1 but different values of λ. For example, suppose X1 = 3. Then, if λ = 2, we might observe X2 = 4, X3 = 1, and X4 = 2. On the other hand, if λ = 5, we might observe X2 = 0, X3 = 1, and X4 = 2. Both data sets have X1 = 3, but they have different values of λ, so X1 is not sufficient for λ.
c. To show that T is sufficient using the Neyman Factorization Theorem, we need to find functions g(T|λ) and h(x) such that L(λ|x) = g(T|λ) * h(x). We have already shown that
L(λ|x) = λ^(Σxi) * exp(-nλ) / (x1! * x2! * … * xn!)
Therefore, we can choose g(T|λ) = exp(-nλ) * λ^T / T! and h(x) = 1. Then, we have
L(λ|x) = exp(-nλ) * λ^T / T! * 1
which satisfies the factorization theorem. Therefore, T is sufficient for λ.
d. The likelihood function is
L(λ|x) = λ^(Σxi) * exp(-nλ) / (x1! * x2! * … * xn!)
The log-likelihood function is
log L(λ|x) = Σxi * log(λ) - nλ - Σ log(xi!)
To find the MLE for λ, we differentiate the log-likelihood function with respect to λ and set the derivative equal to zero:
d/dλ log L(λ|x) = Σxi/λ - n = 0
Therefore, λ = Σxi / n is the MLE for λ.
To show that this estimator is unbiased, we need to calculate its expected value:
E(λ) = E(Σxi/n) = (1/n) * E(Σxi) = (1/n) * nλ = λ
Therefore, the MLE for λ is unbiased.
To know more about factorization theorem click here:
brainly.com/question/13547729
#SPJ4
if N is 1/8 as much as 16, what does N equal?
Background:
"As much as" means that two quantities are being compared and is a keyword for division.
Procedure:
\(N=\frac{16}{8}=2\)Answer: 2
Fir answer gets brainliest, If it's wrong I will report it.
The equation of the given line is expressed as:
(5/2)x + (2/3)y = 4
How to find the equation of the line?The formula for the equation of a line in slope intercept form is:
y = mx + c
where:
m is slope
c is y-intercept
From the given line, we see the coordinates:
(0, 6) and (1.6, 0)
Thus, the y-intercept is 6
Slope = (y2 - y1)/(x2 - x1)
Slope = (0 - 6)/(1.6 - 0)
Slope = -6/1.6 = -15/4
Thus:
y = -15/4(x) + 6
Multiply through by 2/3 to get:
(2/3)y = -(5/2)x + 4
Thus:
(5/2)x + (2/3)y = 4
Read more about Equation of Line at: https://brainly.com/question/18831322
#SPJ1
you need a shelf for a small space in your house, so you make a measurement with your meter stick and head to the store. once there, you find that the dimension of the shelves you want is given in cm. if your space measured 0.5 m, and the shelves at the store measure 130 cm, answer the following questions:
The shelf you want to purchase measures 1.3 meters
Using the required conversion metrics, the width of the shelf at the stick 0.3 meters and will not fit in the house.
Given the Parameters :
Measured width = 0.5 m
Store width = 130 cm
Using the appropriate metric conversion values :
100 cm = 1 m
Converting the store measurement into meters :
130 cm ÷ 100 = 1.3 meters
Therefore, the measured width and the width of the shelf at the store are different, then the shelf will not fit in.
Hence the answer is, the shelf you want to purchase measures 1.3 meters
To learn more about measurements click here https://brainly.com/question/27233632
#SPJ4
figure out what the percent is
How much do you need to subtract from 57/10 to make 5?
Answer:
7
Step-by-step explanation:
because 57/10 is = 5.7 so you need to subtract 7
1 point
Identify the absolute maximum point(s) in the graph
A 0,-7
B 7,0
C 0,7
D 0,0
Answer:
C 0,7
Step-by-step explanation:
The absolute maximum of the point is the point with the highest y-value. In the graph, there is clearly a point on the y-axis that is the absolute maximum. It is at (0, 7). So, your answer should be C 0, 7.
Hope this helps!
Simplify the following expression. 95 + 5[14 - (3 + 8)] A. 140 B. 190 C. 220 D. 110
Answer:
The answer is D. 110
Step-by-step explanation:
You add 8 and 3 and get 11 first because in parentheses, and then you subtract that by 14, which will give you 3. Then you multiply 3 times 5 to get 15 and add that to 95 to get your answer. Hope this helps!
Answer:
The answer is D. 110
Step-by-step explanation:
Given numbers = (27, 56, 46,
57, 99, 77, 90), pivot = 77
Given numbers \( =(27,56,46,57,99,77,90) \), pivot \( =77 \) What is the low partition after the partitioning algorithm is completed? (comma between values) What is the high partition after the partit
After the partitioning algorithm has completed, the low partition would be (27, 56, 46, 57) and the high partition would be (99, 77, 90).
Explanation: In the quicksort algorithm, partitioning is an important step. The partition algorithm in quicksort chooses an element as a pivot element and partition the given array around it.
In this way, we will get a left sub-array that consists of all elements less than the pivot, and the right sub-array consists of all elements greater than the pivot. If the pivot element is selected randomly, then quicksort performance would be O(n log n) in the average case.
In the given question, the given numbers are (27, 56, 46, 57, 99, 77, 90), and the pivot element is 77.To partition this array, the following steps are followed.
1. The left pointer will point at 27, and the right pointer will point at 90.
2. Increment the left pointer until it finds an element that is greater than or equal to the pivot element.
3. Decrement the right pointer until it finds an element that is less than or equal to the pivot element.
4. If the left pointer is less than or equal to the right pointer, swap the elements of both pointers.
5. Repeat steps 2 to 4 until left is greater than right.
In the given question, the left pointer will point at 27, and the right pointer will point at 90. Incrementing the left pointer will find the element 56, and the decrementing the right pointer will find the element 77.
As 56 < 77, swap the elements of both pointers. In this way, partitioning continues until left is greater than right. Now, the array will be partitioned into two sub-arrays.
The left sub-array will be (27, 56, 46, 57), and the right sub-array will be (99, 77, 90).
So the low partition is (27, 56, 46, 57), and the high partition is (99, 77, 90).
Therefore, the answer is: low partition (27, 56, 46, 57) and high partition (99, 77, 90).
To know more about partition, visit:
https://brainly.com/question/27877543
#SPJ11
sin2x=1/2 i need to solve for x
The value of x from the trigonometric equation sin2x = 1/2 is
x = 15° + 180°n
x = 75° + 180°n
The value of x in radians is
x = π/12 + πn
x = 5π/12 + πn
where n is an integer
What are trigonometric relations?
Trigonometry is the study of the relationships between the angles and the lengths of the sides of triangles
The six trigonometric functions are sin , cos , tan , cosec , sec and cot
Let the angle be θ , such that
sin θ = opposite / hypotenuse
cos θ = adjacent / hypotenuse
tan θ = opposite / adjacent
tan θ = sin θ / cos θ
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
Given data ,
Let the equation be represented as A
Now , the value of A is
sin ( 2x ) = 1/2
Taking inverse on both sides of the equation , we get
2x = arcsin ( 1/2 )
2x = π/6
Divide by 2 on both sides of the equation , we get
x = π/12
Now , In the first quadrant, sin, cos and tan are all positive.
In the second quadrant going anti-clockwise, only sin is positive.
So , the second solution will be
2x = π - π/6
2x = 5π/6
Divide by 2 on both sides of the equation , we get
x = 5π/12
So , the values of x in radians is
x = π/12 + πn
x = 5π/12 + πn
where n is an integer
Hence , the value of the trigonometric relation is x = π/12 + πn and
x = 5π/12 + πn
To learn more about trigonometric relations click :
https://brainly.com/question/14746686
#SPJ1