The graph of the functions indicates that the intervals over which the functions are increasing are;
The function f is increasing over the interval 0 ≤ x < ∞
The function g is increasing over the interval -∞ < x < ∞
What is a function?A function is a rule or definition that maps an input element to an output element, such that each input has exactly one output.
The values on the graph of the functions indicates;
The vertex of the function f is; (0, 2)
The function f is decreasing from -∞ < x ≤ 0
The function f is increasing from 0 ≤ x ≤ -∞
The function g is increasing over the interval -∞ < x < ∞
The correct options are therefore;
The function f is increasing over the interval; 0 ≤ x < ∞The function g is increasing over the interval; -∞ < x < ∞Learn more on functions here: https://brainly.com/question/31043788
#SPJ1
34. Is this polygon it is convex or concave.
A circle with centre C(-3, 2) has equation x² + y² + 6x - 4y = 12 (a) Find the y-coordinates of the points where the circle crosses the y-axis. (b) Find the radius of the circle. (c) The point P(2,5) lies outside the circle. (i) Find the length of CP, giving your answer in the form √n, where n is an integer. (ii) The point Q lies on the circle so that PQ is a tangent to the circle. Find the length of PQ.
a) The circle crosses the y-axis at the points (0, 6) and (0, -2). b) the radius of the circle is 5. c) (i) The length of CP is √34. (ii) The length of PQ is 10.
(a) To find the y-coordinates of the points where the circle crosses the y-axis, we substitute x = 0 into the equation of the circle:
0² + y² + 6(0) - 4y = 12
y² - 4y = 12
y² - 4y - 12 = 0
To solve this quadratic equation, we can factor it:
(y - 6)(y + 2) = 0
Setting each factor to zero, we find two possible values for y:
y - 6 = 0 => y = 6
y + 2 = 0 => y = -2
Therefore, the circle crosses the y-axis at the points (0, 6) and (0, -2).
(b) To find the radius of the circle, we can complete the square to rewrite the equation of the circle in standard form:
x² + y² + 6x - 4y = 12
(x² + 6x) + (y² - 4y) = 12
(x² + 6x + 9) + (y² - 4y + 4) = 12 + 9 + 4
(x + 3)² + (y - 2)² = 25
Comparing this equation with the standard form of a circle, (x - h)² + (y - k)² = r², we can see that the center of the circle is at (-3, 2) and the radius is √25 = 5.
Therefore, the radius of the circle is 5.
(c) (i) To find the length of CP, we can use the distance formula between two points. The coordinates of C are (-3, 2), and the coordinates of P are (2, 5).
The distance formula is given by:
d = √((x₂ - x₁)² + (y₂ - y₁)²)
Substituting the coordinates into the formula, we have:
CP = √((2 - (-3))² + (5 - 2)²)
= √(5² + 3²)
= √(25 + 9)
= √34
Therefore, the length of CP is √34.
(ii) To find the length of PQ, we can use the fact that PQ is a tangent to the circle. The radius of the circle is 5, and the line segment CP is perpendicular to PQ.
Since CP is perpendicular to PQ, CP is the radius of the circle. Therefore, CP = 5.
Therefore, the length of PQ is equal to 2 times the length of CP:
PQ = 2 * CP
= 2 * 5
= 10
Therefore, the length of PQ is 10.
To learn more about circle here:
https://brainly.com/question/31831831
#SPJ4
NEED HELP ASAP, EXPLANATION WOULD BE APPRECIATED THANKS
The value of variable x is 16.5 using the cross-multiplication method.
What is the cross-multiplication method?The denominator of the first term is multiplied by the numerator of the second term when utilizing the cross-multiplication method.
In mathematics, more specifically in elementary arithmetic and elementary algebra, one could cross-multiply an equation between two fractions or rational expressions to make the equation easier or to determine the value of a variable.
So, the value of x will be:
Use the cross-multiplication method as follows:
2x-7/4 = x+3/3
3(2x-7) = 4(x+3)
6x - 21 = 4x + 12
2x = 12 + 21
2x = 33
x = 33/2
x = 16.5
Therefore, the value of variable x is 16.5 using the cross-multiplication method.
Know more about the cross-multiplication method here:
https://brainly.com/question/28839233
#SPJ1
Correct question:
Obtain the value of x.
How do the areas of the parallelograms compare? the area of parallelogram abcd is 4 square units greater than the area of parallelogram efgh. the area of parallelogram abcd is 2 square units greater than the area of parallelogram efgh. the area of parallelogram abcd is equal to the area of parallelogram efgh. the area of parallelogram abcd is 2 square units less than the area of parallelogram efgh.
option third "The area of parallelogram ABCD is equal to the area of parallelogram EFGH" is correct.
What is parallelogram?In two-dimensional geometry, it is a plane shape having four sides, in which two pairs of sides are parallel to each other and equal in length. The sum of all angles in a parallelogram is 360°.
The question is incomplete.
The complete question is in the picture, please refer to the attached picture.
The area of the parallelogram is:
A = b×h
Here b is the base length and h is the height
In ABCD parallelogram:
A = (3)×(3)
A = 9 square units
EFGH parallelogram:
a = (3)×(3)
A = 9 square units
The area of parallelogram ABCD is equal to the area of parallelogram EFGH.
Thus, option third "The area of parallelogram ABCD is equal to the area of parallelogram EFGH" is correct.
Learn more about the parallelogram here:
brainly.com/question/1563728
#SPJ1
8 divided by 292 pls my math homework is due today
Answer:
36.5
Step-by-step explanation:
Answer:
292 divided by 8 is 36.5
However, 8 divided by 292 is 0.02739726027
Step-by-step explanation:
We know this by dividing, plus if you want to double check answers, go ogle is always there for you!
For an increase of 6% what is the multiplier
For an increase of 6% the multiplier is 1.06
How to find the correspondent multiplier?If we have a value A, and we want to increase it by a percentage X, the formula that we need to use to find the new value is:
new value = A*(1 + X/100%)
Where the multiplier is (1 + X/100%).
Here the percentage is 6%, then the multiplier for this case will be:
(1 + 6%/100%) = (1 + 0.06) = 1.06
The new value would be:
new value = A*1.06
Learn more about percentages at:
https://brainly.com/question/843074
#SPJ1
How to solve this problem
Answer:
x = 2
Step-by-step explanation:
We are given the equation 3 - 4x - 2 = 2x - 11;
\(3 - 4x - 2 = 2x - 11,\\3 - 2 = 6x - 11,\\1 = 6x - 11,\\12 = 6x,\\\\x = 2\\Conclusion, x = 2\)
If you want this explanation in a " statement reasoning " format refer to the attachment below;
Suppose IQ scores were obtained for randomly selected sets of . The pairs of measurements yield , , r , P-value 0.000, and , where x represents the IQ score of the . Find the best predicted value of given that the has an IQ of ?
Use a significance level of 0.05. 20 siblings 20 x=99.42 y=97.2 =0.867 = = −21.33+1.19x y older child y older child 97 Click the icon to view the critical values of the Pearson correlation coefficient r.1 The best predicted value of is . y (Round to two decimal places as needed.) Critical Values of the Pearson Correlation Coefficient r n 0.05 α = 0.01 α = NOTE: To test H0 : 0 against H1: 0, reject H0 if the absolute value of r is greater than the critical value in the table. rho= rho≠4 0.950 0.990 5 0.878 0.959 6 0.811 0.917
The best predicted value given that a person has an IQ of 91 is 94.03.
Here, we are given that-
sample size n = 20
sample mean for the independent value x = 100.39
sample mean for the dependent value y = 103.6
coefficient of correlation r = 0.925
The general expression for representing a linear model is given by-
y = β₀ + β₁x
where β₀ is the intercept and β₁ is the slope
For the above given case, the linear model will be given as-
y = -3.34 + 1.07x
where -3.34 is the intercept and 1.07 the slope.
To find the best predicted value when X = 91, we substitute the value of x as 91 in the equation as follows-
y = -3.34 + 1.07(91)
y = 94.03
Thus, the best predicted value given that a person has an IQ of 91 is 94.03.
Learn more about estimation here-
https://brainly.com/question/15712887
#SPJ4
What is an equation that goes through (12, 5); m = -3
Please help
Answer:
Step-by-step explanation:
Use this formula:
y - y1 = m ( x - x1 )
We are told m = -3 and given the point (12 , 5) ---- > so x1 = 12 and y1= 5
Put these values into the formula above and you get:
y - y1 = m ( x - x1 )
y - 5 = -3 ( x - 12 )
y - 5 = -3x + 36
y = -3x + 36 + 5
y = -3x + 41
what is 4/8 simplified
Answer:
exact form: 1/2
decimal form: 0.5
Step-by-step explanation:
Can someone help with number 28 and explain how todo it
Base on tangent and secant rule for intersection,
The length of WZ is 12.
The angle of the arc XZ is 39 degrees.
What is tangent of a circleThe tangent to a circle is defined as a straight line that touches the circle at a single point.
Therefore,
WX × WY = WZ²
8 × (10 + 8) = WZ²
8 × 18 = WZ²
WZ² = 144
WZ = √144
WZ = 12
74° = 1 / 2(187 - arc XZ)
74 = 93.5 - arcXZ / 2
-19.5 = - arcXZ / 2
-39 = - arcXZ
-arcXZ = 39°
learn more on tangent here: https://brainly.com/question/12655272
Ms. Salazar’s car averages 25 miles per gallon of gasoline. She filled the 10-gallon tank with gasoline before traveling 200 miles on a trip. Which graph BEST represents this situation?
Step-by-step explanation:
2524 ÷ 23 = 24a6u= 7
bengek hyung
What is the inverse of the function f(x) = 1/9x + 2
Answer:
9x-18=y
Step-by-step explanation:
by switching the places of x and y and solving for y
PLEASE HELP!!
Let f(x) = 8(3)^x The graph is stretched vertically by a factor of 3 to form the graph g(x). Choose the equation of g(x)
Answers:
a: g(x)=8(9)^x
b: g(x)=3(3)^x
c: g(x)=24(3)^x
d: g(x)=11(3)^x
The equation of g(x) is 24 (3)ˣ when the graph is stretched vertically by a factor of 3 to form the graph g(x).
What is function?
A formula, rule, or legislation that specifies how one variable (the independent variable) and another variable are related (the dependent variable).In contrast to the function f (x), the function g (x) is referred to as an inner function. The function g is the inner function of the outer function f, thus we can also interpret f [g (x)] in this way.For the parent function f(x) and a constant k >0,
then, the function given by
g(x) = kf(x) can be sketched by vertically stretching f(x) by a factor of k if k>1 (or)
if 0 < k < 1 , then it is vertically shrinking f(x) by a factor of k
As per the given statement that the graph of f(x) is stretched vertically by a factor of 3 i.e
k = 3 >1
so, by definition
g(x) = 3 f(x) = 3 . 8(3)ˣ
= 8(3)ˣ⁺¹
= 24 (3)ˣ
Hence, the equation of g(x) is 24 (3)ˣ when the graph is stretched vertically by a factor of 3 to form the graph g(x).
To know more about function check the below link:
https://brainly.com/question/22340031
#SPJ1
let t : r5 →r3 be the linear transformation defined by the formula
The rank of the standard matrix for T is 2, which is determined by the number of linearly independent columns in the matrix.
To find the rank of the standard matrix for the linear transformation T: R^5 → R^3, we need to determine the number of linearly independent columns in the matrix.
The standard matrix for T can be obtained by applying the transformation T to the standard basis vectors of R^5.
The standard basis vectors for R^5 are:
e1 = (1, 0, 0, 0, 0),
e2 = (0, 1, 0, 0, 0),
e3 = (0, 0, 1, 0, 0),
e4 = (0, 0, 0, 1, 0),
e5 = (0, 0, 0, 0, 1).
Applying the transformation T to these vectors, we get:
T(e1) = (1 + 0, 0 + 0 + 0, 0 + 0) = (1, 0, 0),
T(e2) = (0 + 1, 1 + 0 + 0, 0 + 0) = (1, 1, 0),
T(e3) = (0 + 0, 0 + 1 + 0, 0 + 0) = (0, 1, 0),
T(e4) = (0 + 0, 0 + 0 + 1, 1 + 0) = (0, 1, 1),
T(e5) = (0 + 0, 0 + 0 + 0, 0 + 1) = (0, 0, 1).
The standard matrix for T is then:
[1 0 0 0 0]
[1 1 0 1 0]
[0 1 0 1 1]
To find the rank of this matrix, we can perform row reduction or use the concept of linearly independent columns. By observing the columns, we see that the second column is a linear combination of the first and fourth columns. Hence, the rank of the matrix is 2.
Therefore, the rank of the standard matrix for T is 2.
LEARN MORE ABOUT matrix here: brainly.com/question/28180105
#SPJ11
COMPLETE QUESTION - Let T: R5-+ R3 be the linear transformation defined by the formula T(x1, x2, x3, x4, x5) = (x1 + x2, x2 + x3 + x4, x4 + x5). (a) Find the rank of the standard matrix for T.
(q7) Find the volume of the solid obtained by rotating the region bounded by y = x and y = 2x2 about the line y = 2.
The volume of the solid obtained by rotating the region bounded by y = x and y = 2x² about the line y = 2 is π/24 units cube.
option D.
What is the volume of the solid obtained?The volume of the solid obtained by rotating the region bounded by y = x and y = 2x² about the line y = 2 is calculated as follows;
y = 2x²
x² = y/2
x = √(y/2) ----- (1)
x = y -------- (2)
Solve (1) and (2) to obtain the limit of the integration.
y = √(y/2)
y² = y/2
y = 1/2 or 0
The volume obtained by the rotation is calculated as follows;
V = 2π∫(R² - r²)
V = 2π ∫[(√(y/2)² - (y)² ] dy
V = 2π ∫ [ y/2 - y² ] dy
V = 2π [ y²/4 - y³/3 ]
Substitute the limit of the integration as follows;
y = 1/2 to 0
V = 2π [ 1/16 - 1/24 ]
V = 2π [1/48]
V = π/24 units cube
Learn more about volume of solid here: https://brainly.com/question/24259805
#SPJ1
Solve the inequality 4y + 7< 16
Answer:
y = 28
Step-by-step explanation:
To boost the growth of a crop, a farmer decided to use different combinations of three fertilizers, A, B, and C. The first combination
costs $384 and consists of 6 liters of fertilizer A, 5 liters of fertilizer B, and 3 liters of fertilizer C. The second combination consists of 10
liters of A, 2 liters of B, and 6 liters of C, and it costs $516. The last combination consists of 4 liters of A, 8 liters of B, and 2 liters of C,
with a cost of $368. Let x be the price of fertilizer A, y be the price of fertilizer B, and z be the price of fertilizer C. Use matrices to
determine the cost of each type of fertilizer.
X=
y =
ZE
Answer:
The answer is explained below
Step-by-step explanation:
Let x be the price of fertilizer A, y be the price of fertilizer B, and z be the price of fertilizer C
The first combination costs $384 and consists of 6 liters of fertilizer A, 5 liters of fertilizer B, and 3 liters of fertilizer C. The first combination is given by the equation:
6X + 5Y + 3Z = 384
The second combination consists of 10 liters of A, 2 liters of B, and 6 liters of C, and it costs $516. The second combination is given by the equation:
10X + 2Y + 6Z = 516
The last combination consists of 4 liters of A, 8 liters of B, and 2 liters of C, with a cost of $368. The last combination is given by the equation:
4X + 8Y + 2Z = 368
In Matrix form it can be represented as:
\(\left[\begin{array}{ccc}6&5&3\\10&2&6\\4&8&2\end{array}\right]\left[\begin{array}{c}X\\Y\\Z\end{array}\right]=\left[\begin{array}{c}384\\516\\368\end{array}\right]\)
\(\left[\begin{array}{c}X\\Y\\Z\end{array}\right]=\left[\begin{array}{ccc}6&5&3\\10&2&6\\4&8&2\end{array}\right]^{-1}\left[\begin{array}{c}384\\516\\368\end{array}\right]\\\\\left[\begin{array}{c}X\\Y\\Z\end{array}\right]=\left[\begin{array}{ccc}1.5714&-0.5&-0.857\\-0.142&0&0.2142\\-2.571&1&1.3571\end{array}\right]\left[\begin{array}{c}384\\516\\368\end{array}\right]\\\\\left[\begin{array}{c}X\\Y\\Z\end{array}\right]=\left[\begin{array}{c}30\\24\\28\end{array}\right]\)
Therefore:
X = $30, Y = $24, Z = $28
The price of fertilizer A = $30 per liter, The price of fertilizer B = $24 per liter and The price of fertilizer c = $28 per liter
Answer:
X = $30, Y = $24, Z = $28
Step-by-step explanation:
PLATO <3
Given that g(x)=x2−2x−9 find
(g∘g)(−2)=
To find the value of (g∘g)(−2) for the function g(x) = x^2 - 2x - 9, we need to evaluate the composition of g with itself at x = -2. This involves substituting the output of g(-2) into the function g.
First, let's find the value of g(-2) by substituting -2 into the function g(x):
g(-2) = (-2)^2 - 2(-2) - 9
= 4 + 4 - 9
= -1
Now, we can substitute this value back into the function g(x) to evaluate (g∘g)(−2):
(g∘g)(−2) = g(g(-2))
= g(-1)
Substituting -1 into the function g(x):
g(-1) = (-1)^2 - 2(-1) - 9
= 1 + 2 - 9
= -6
Therefore, the value of (g∘g)(−2) for the given function g(x) = x^2 - 2x - 9 is -6.
Learn more about function here:
https://brainly.com/question/30721594
#SPJ11
PLZ I NEED THIS ASAP!! ILL GIVE YOU BRAINLIST!!!
ANSWER IT ALL AND PLZ TRY TO EXPLAIN IT!q
Answer:
Yes
Step-by-step explanation:
I feel like its yes because x and y share the numbers 1-4
Answer:
Whats BrainList
Step-by-step explanation:
Andy is designing a dice tray in the shape of a rectangular prism to use during a role-playing game. The tray needs to be three centimeters high and have a volume of 252 cubic centimeters in order for the dice to roll properly. The length of the tray should be five centimeters longer than its width. The volume of a rectangular prism is found using the formula V = l · w · h, where l is the length, w is the width, and h is the height. Complete the equation that models the volume of the tray in terms of its width, x, in centimeters.
Answer:
\(3x^2 + 15x - 252 = 0\)
Step-by-step explanation:
The volume of the prism is 252 cubic centimeters.
The volume of a rectangular prism is gotten by the formula:
V = l * w * h
where l = length
w = width
h = height
The height of the prism is 3 cm.
Let x be the width of the prism.
The length of the prism is 5 cm longer than the width.That is:
l = 5 + x
The volume of the prism is therefore:
V = (5 + x) * x * 3
\(=> 252 = (5x + x^2) * 3\\\\252 = 15x + 3x^2\\\\=> 3x^2 + 15x - 252 = 0\)
This is the equation that models the volume of the tray in terms of x.
Answer:
Andy is designing a dice tray in the shape of a rectangular prism to use during a role-playing game. The tray needs to be three centimeters high and have a volume of 252 cubic centimeters in order for the dice to roll properly. The length of the tray should be five centimeters longer than its width.
The volume of a rectangular prism is found using the formula V = l · w · h, where l is the length, w is the width, and h is the height.
Complete the equation that models the volume of the tray in terms of its width, x, in centimeters.
3x^2 + 15x = 252
Is it possible for the width of the tray to be 7.5 centimeters?
no it is too large
exercise 6.1.11: find the inverse laplace transform of 1 /(s−1)^2 (s+1) .
Answer:
The inverse Laplace transform of 1/(s-1)^2 (s+1) is e^t - te^t + e^(-t)
We start by applying partial fraction decomposition to the given expression:
1/(s-1)^2 (s+1) = A/(s-1) + B/(s-1)^2 + C/(s+1)
Multiplying both sides by the denominator, we get:
1 = A(s-1)(s+1) + B(s+1) + C(s-1)^2
Substituting s=1 gives:
1 = 4C
So, C=1/4.
Substituting s=-1 gives:
1 = -4A
So, A=-1/4.
Substituting s=1 and simplifying gives:
B = 1/2.
Thus, we have:
1/(s-1)^2 (s+1) = (-1/4)/(s-1) + (1/2)/(s-1)^2 + (1/4)/(s+1)
Taking the inverse Laplace transform of each term using the table of Laplace transforms, we get:
L^(-1){(-1/4)/(s-1)} = -e^t
L^(-1){(1/2)/(s-1)^2} = te^t
L^(-1){(1/4)/(s+1)} = (1/2)e^(-t)
Hence, the inverse Laplace transform of 1/(s-1)^2 (s+1) is e^t - te^t + e^(-t).
Learn more about laplace tranform:
https://brainly.com/question/30759963
#SPJ11
20. Your friend says the absolute value equation |2x + 9 + 7 = 3 has two solutions
because the constant on the right side of the equation is positive. Is your friend
correct? Explain.
This is an absolute value problem. In mathematics, absolute value is simply defined as the distance of a number from zero on the number line, irrespective of the direction on either side of zero.
In the absolute value given which is; |2x + 9| = -4, we can see that there is an absolute value when the right hand side is negative and not when it is only positive.
Thus, the friend is not correct.We are given the equation;
|2x + 9| + 7 = 3
Now when dealing with absolute values, it means that the solution is either positive or negative.
For example;
|x| = 5 means that x = +5 or -5
Thus in this question, let us first of all simplify the equation to get;
|2x + 9| = 3 - 7
|2x + 9| = -4
From |2x + 9| = -4, we can see that there is an absolute value when the right hand side is negative and not when it is only positive.
Thus, the friend is not correct.
Read more here; brainly.com/question/12928519
Find the circumference of a circle with a radius of 35 inches in terms of and to the nearest tenth of an inch. (use 3.14 for *)
A. C = 70 inches
C ≈ 219.8 inches
B. C = 17.5 inches
C ≈ 54.95 inches
C. C = 11 2/3 inches
C ≈ 36 19/30 inches
D: C = 105
C ≈ 329.7 inches
pls help i’ll give brainiest too
The circumference of a circle with a radius of 35 inches in terms of and to the nearest tenth of an inch is 219.8 inches.
The correct answer choice is option A.
What is the circumference of a circle?Circumference of a circle, c = 2πr
Where,
radius, r = 35 inches
c = 2πr
= 2 × 3.14 × 35
= 219.8 inches
In conclusion, 219.8 inches is the circumference of the circle.
Read more on circumference of a circle:
https://brainly.com/question/20489969
#SPJ1
when are the claim and the null hypothesis the same
the claim aligns with the null hypothesis, as both assert the absence of an effect, difference, or relationship between variables.
The claim and the null hypothesis are the same when the claim being made is that there is no significant difference or relationship between variables or that there is no effect or impact of a particular factor. In other words, the claim asserts that the null hypothesis is true.
For example, if the null hypothesis (H₀) states that there is no difference between the means of two groups, the corresponding claim would be that the means are indeed equal. Similarly, if the null hypothesis states that there is no correlation between two variables, the claim would be that there is indeed no significant correlation.
In such cases, the claim aligns with the null hypothesis, as both assert the absence of an effect, difference, or relationship between variables.
Learn more about null hypothesis here
https://brainly.com/question/30821298
#SPJ4
Can someone pleaseeee help and if you’re correct i’ll give brainliest
Answer:
35
Step-by-step explanation:
Rows: 7+7+7+7+7=35
Columns: 5+5+5+5+5+5+5=35
A linear function includes the points (2, 3) and (6, 8). What is the rate of change of the linear function?
Write the answer as an improper fraction (fraction greater than one) in lowest terms.
Answer:
The rate of change of a linear function = 5/4
Step-by-step explanation:
Given that a linear function includes the points (2, 3) and (6, 8).
So we have the points
(2, 3)(6, 8)We know that the rate of change of a function is also termed as the slope of the function.
In other words, the slope of the linear function gives us the rate of change of the linear function.
Thus,
Determining the rate of change or slope between (2, 3) and (6, 8)
(x₁, y₁) = (2, 3) (x₂, y₂) = (6, 8)Using the formula
Rate of change = Slope = [y₂ - y₁] / [x₂ - x₁]
= [8 - 3 / [6 - 2]
= 5 / 4
Thus, the rate of change of a linear function = 5/4
When multiplying or dividing, if you have
an even quantity of negative numbers the
answer will be?
Answer:
Read the explanation
Step-by-step explanation:
Explanation:
When multiplying and dividing more than two positive and negative numbers, use the Even-Odd Rule: Count the number of negative signs — if you have an even number of negatives, the result is positive, but if you have an odd number of negatives, the result is negative. This problem has just one negative sign
Melissa made a total of 14 baskets during her last basketball game. She made a number of 2-point baskets and a number of 3-point baskets for a total of 33 points. Using matrices to solve, how many 3-point baskets did Melissa make in her last basketball game? 3 5 9 11
Answer:
The answer should be 5
Step-by-step explanation: cause 3x5=15 which leaves 9 more shots that are equal to 2 2x9= 18 and 18+15= 33 which means the answer is 5
Answer:
B.) 5
Step-by-step explanation:
Edge2021
If the y is infinity and f(n/y)*1/y is 1/(x^2 + x), what is f(x)?
Answer:
x"2^^1/y
I took this test and got question 4 correct
:))))