Given the following distances:
On Monday : 1¼ miles
On Tuesday: 2⅔ miles
To find the total distance Lisa walked those 2 days, let's add the distance she walked on monday and the distance she walked on tuesday.
\(\begin{gathered} \text{Total distance = 1}\frac{1}{4}+\text{2}\frac{2}{3}\text{ } \\ \text{ = }\frac{5}{4}\text{ + }\frac{8}{3} \end{gathered}\)\(\begin{gathered} \frac{5}{4}+\frac{8}{3}\text{ = } \\ =\frac{15+32}{12} \\ =\text{ }\frac{47}{12} \\ =\text{ }3\frac{11}{12} \end{gathered}\)The total distance, in miles , Lisa walked during those 2 days =
\(3\frac{11}{12}\text{ miles}\)what is the 4th term of 3n+5
Answer:
17
Step-by-step explanation:
if the sequence is 3n+5
we do 3x4(since we are working out the 4th term) +5
3x4=12 12+5=17
Which of the following are possible
side lengths for a triangle?
A. 9, 4,8
B. 14, 7,6
C. 3, 8, 1
The only set of side lengths that can form a triangle is 9, 4, 8.
Option A is the correct answer.
What is a triangle?A triangle is a 2-D figure with three sides and three angles.
The sum of the angles is 180 degrees.
We can have an obtuse triangle, an acute triangle, or a right triangle.
We have,
In a triangle, the sum of the lengths of any two sides must be greater than the length of the third side.
Let's check if each of the given sets of side lengths satisfies this condition:
A.
9, 4, 8
9 + 4 > 8 ✓
9 + 8 > 4 ✓
4 + 8 > 9 ✓
All three inequalities are true, so these side lengths can form a triangle.
B.
14, 7, 6
14 + 7 > 6 ✓
14 + 6 > 7 ✓
7 + 6 > 14 ✗
The last inequality is false, so these side lengths cannot form a triangle.
C.
3, 8, 1
3 + 8 > 1 ✓
3 + 1 > 8 ✗
8 + 1 > 3 ✓
The second inequality is false, so these side lengths cannot form a triangle.
Therefore,
The only set of side lengths that can form a triangle is A. 9, 4, 8.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ2
Describe What Anime Is
(In 2 or 3 sentences)
Pls don’t copy and paste from G00gI3
Answer:
Anime is animation from japan
pls help me solve this
The results of operations between vectors are, respectively:
Case A: u + w = <- 3, - 1>
Case B: - 6 · v = <6, 6>
Case C: 3 · v - 6 · w = <- 21, - 15>
Case D: 4 · w + 3 · v - 5 · u = <39, 4>
Case E: |w - v| = √(4² + 3²) = 5
How to determine the operations between vectors
In this problem we must determine the operations between vectors, this can be done by following definitions:
Vector addition
v + u = (x, y) + (x', y') = (x + x', y + y')
Scalar multiplication
α · v = α · (x, y) = (α · x, α · y)
Norm of a vector
|u| = √(x² + y²)
Now we proceed to determine the result of each operation:
Case A:
u + w = <- 6, - 3> + <3, 2>
u + w = <- 3, - 1>
Case B:
- 6 · v = - 6 · <- 1, - 1>
- 6 · v = <6, 6>
Case C:
3 · v - 6 · w = 3 · <- 1, - 1> - 6 · <3, 2>
3 · v - 6 · w = <- 3, - 3> + <- 18, - 12>
3 · v - 6 · w = <- 21, - 15>
Case D:
4 · w + 3 · v - 5 · u = 4 · <3, - 2> + 3 · <- 1, - 1> - 5 · <- 6, - 3>
4 · w + 3 · v - 5 · u = <12, - 8> + <- 3, - 3> + <30, 15>
4 · w + 3 · v - 5 · u = <39, 4>
Case E:
|w - v| = |<3, 2> - <- 1, - 1>|
|w - v| = |<4, 3>|
|w - v| = √(4² + 3²) = 5
To learn more on vectors: https://brainly.com/question/31900604
#SPJ1
0.5 (-2 + 4d) -13 for d
Step-by-step explanation:
-13 x 4 = -52
-52 x 0.5 = -25
-2 x 0.5 = -1
-1 + -25 = -26
What is the approximate value of θ if tan θ = 7/9
Answer:
37.9°-----------------------
Taking the inverse tangent (arctan) of the given ratio 7/9.
Use a calculator or trigonometric table to find:
θ ≈ arctan(7/9)The approximate value of θ is 37.9°.
2. Marjorie wants to subdivide a rectangular plot of land measuring 600 m by 720 m
into equal square lots. What is the side length of the largest possible square lot
she can use? Show the prime factorization results to support your answer.
the largest length of the squares will be 120m.
What is the side length of the largest possible square lot she can use?
The largest possible length will be equal to the greatest common factor between the dimensions of the rectangular plot, so we need to find the GCF between 600 and 720.
If we decompose both numbers, we get:
600 = 2*2*2*3*5*5
720 = 2*2*2*2*3*3*5
Then the greatest common factor is: (2*2*2*3*5) = 120
So the largest length of the squares will be 120m.
If you want to learn more about greatest common factors:
https://brainly.com/question/219464
#SPJ1
The measures of the angles of △ABC are given by the expressions in the table.
The angles of the triangle are 125 degrees, 20 degrees, and 35 degrees.
Define triangles.A triangle is a closed geometric shape with three sides, three angles, and three line segments. Three non-collinear points are joined by line segments to create the simplest polygon, which has three non-collinear points.
Triangles can be categorized according to the size of their sides and angles. Triangles can be categorized as equilateral (all sides are equal in length), isosceles (both sides are equal in length), or scalene based on their sides (all sides are different in length). Triangles can be categorized as acute (all angles are less than 90 degrees), obtuse (one angle is greater than 90 degrees), or right (one angle is greater than 90 degrees) (one angle is exactly 90 degrees).
In any triangle, the sum of the three interior angles is always 180 degrees. Therefore, we can write:
a + b + c = 180
Substituting the given values, we get:
(6x-1) + 20 + (x+14) = 180
Simplifying and solving for x, we get:
7x + 33 = 180
7x = 147
x = 21
Now that we have the value of x, we can substitute it back into the expressions for the angles to find their values:
angle a = (6x-1) = (6*21-1) = 125 degrees
angle b = 20 degrees
angle c = (x+14) = (21+14) = 35 degrees
Therefore, the angles of the triangle are 125 degrees, 20 degrees, and 35 degrees.
To know more about triangles, visit:
https://brainly.com/question/17335144
#SPJ1
PLEASE HELP ME
what is this
Answer: it's A
Step-by-step explanation:
Use what you know about intersecting lines to label the missing and
picture below.
35°
X
type of angle pair:
zoom in
X =
OManeuvering the Middle LLC, 2016, 2022
Answer:
x = 145
Step-by-step explanation:
x and 35° lie on a straight line and are supplementary angles , sum to 180°
x + 35 = 180 ( subtract 35 from both sides )
x = 145
please help me answer this question thank you
Answer:
A
Step-by-step explanation:
Find all values of $x$ that solves this system.
\begin{align*}
x^2 - 9y^2 &= 72\\
x + 3y &= 9
\end{align*}
All the values of x that solve the given system of equations are as follows:
x = 17/2.
What is a system of equations?A system of equations is when multiple variables are related by equations, which are solved to find the values of each variable. Usually, these relations are linear, but they may also be quadratic, as is the case in this problem.
For this problem, we are given two equations, as follows:
x² - 9y² = 72.x + 3y = 9.From the second equation, we have that:
x = 9 - 3y.
Replacing in the first, we have that:
(9 - 3y)² - 9y² = 72.
9y² - 54y + 81 = 72.
54y = 9.
y = 9/54
y = 1/6, as 9/9 = 1, 54/9 = 6.
Hence the solution for x of the system of equations is found by replacement, as follows:
x = 9 - 3y = 9 - 3/6 = 9 - 1/2 = 18/2 - 1/2 = 17/2.
The solution is x = 17/2.
More can be learned about a system of equations at https://brainly.com/question/24342899
#SPJ1
find the coordinates of the points of intersection of the graph y=13-x with the axes. Find the area of the right triangle formed by this line and the coordinate axis
Answer:
Y(0,13)
X(13,0)
Let C(x) represent the cost of producing x items and p(x) be the sale price per item if x items are sold. The profit P(x) of selling x items is P(x)=x p(x)-C(x) (revenue minus costs). The average profit per item when x items are sold is P(x)/x and the marginal profit is dP/dx. The marginal profit approximates the profit obtained by selling one more item given that x items have already been sold. Consider the following cost functions C and price functions p. Complete partsâ (a) throughâ (d) below.
a. Find the profit function P.
b. Find the average profit function and marginal profit function.
c. Find the average profit and marginal profit if x=a units are sold.
d. Interpret the meaning of the values obtained in part (c).
C(x)=â0.02x^2 +50x+100, p(x)=100, a=500
Answer:
\((a)\) \(P(x) = 0.02x^2 +50x - 100\)
\((b)\) \(Average = 0.02x + 50 - \frac{100}{x}\) and \(Marginal = 0.04x + 50\)
\((c)\) \(Average = 59.8\) and \(Marginal = 70\)
(d) See Explanation
Step-by-step explanation:
Given
\(p(x) = 100\)
\(C(x) = -0.02x^2 +50x +100\)
Solving (a) Profit function; P(x)
\(P(x) = xp(x) - C(x)\)
This gives:
\(P(x) = x*100 - (-0.02x^2 + 50x + 100)\)
\(P(x) = 100x + 0.02x^2 - 50x - 100\)
Collect like terms
\(P(x) = 0.02x^2 - 50x +100x - 100\)
\(P(x) = 0.02x^2 +50x - 100\)
Solving (b): Average profit function and Marginal profit function
\(Average = \frac{P(x)}{x}\)
This gives:
\(Average = \frac{0.02x^2 + 50x - 100}{x}\)
Break down the fraction
\(Average = \frac{0.02x^2}{x} + \frac{50x}{x} - \frac{100}{x}\)
\(Average = 0.02x + 50 - \frac{100}{x}\)
\(Marginal = \frac{dP}{dx}\)
\(P(x) = 0.02x^2 +50x - 100\)
Differentiate
\(\frac{dP}{dx} = 2 * 0.02x + 50 - 0\)
\(\frac{dP}{dx} = 0.04x + 50\)
Hence:
\(Marginal = 0.04x + 50\)
Solving (c): Average profit and Marginal profit if x = a
\(a = 500\)
So:
\(x =500\)
Substitute 500 for x
\(Average = 0.02x + 50 - \frac{100}{x}\)
\(Average = 0.02 * 500 + 50 - \frac{100}{500}\)
\(Average = 59.8\)
\(Marginal = 0.04x + 50\)
\(Marginal = 0.04*500 + 50\)
\(Marginal = 70\)
Solving (d): Interpret the values in (c)
\(Average = 59.8\)
They make a profit of 59.8 for the first 500 items
\(Marginal = 70\)
From the 501st item, the profit is 70
A company manufacturing computer chips finds that 8% of all chips manufactured are defective. In an effort to decrease the percentage of defective chips, management decides to provide additional training to those employees hired within the last year. After training was implemented, a sample of 450 chips revealed only 27 defects. A hypothesis test is performed to determine if the additional training was effective in lowering the defect rate. Which of the following statement is true about this hypothesis test?a) The additional training significantly increased the defect rate.b) The additional training significantly lowered the defect rate.c) The additional training did affect the defect rate.d) The additional training did not significantly lower the defect rate.e) None of these.
Answer:
d) The additional training did not significantly lower the defect rate
Step-by-step explanation:
Let proportion of defective chips be = x
Null Hypothesis [H0] : Additional training has no impact on defect rate x = 8% = 0.08
Alternate Hypothesis [H1] : Additional training has impact on defect rate x < 8% , x < 0.08
Observed x proportion (mean) : x' = 27 / 450 = 0.06
z statistic = [ x' - x ] / √ [ { x ( 1-x ) } / n ]
( 0.06 - 0.08 ) / √ [ 0.08 (0.92) / 450 ]
= -0.02 / √ 0.0001635
= -0.02 / 0.01278
z = - 1.56
Since calculated value of z, 1.56 < tabulated value of z at assumed 0.01 significance level, 2.33
Null Hypothesis is accepted, 'training didn't have defect rate reduction impact' is concluded
Rewrite the quadratic function from standard from to vertex form f(x) = x2 - 8x + 44
Answer:
f(x) = (x-4)² +28
Step-by-step explanation:
f(x) = x²- 8x + 44
in vertex form :
f(x) = (x -4)² + 28
If BC= 48 cm and sin
Using relations in a right triangle, it is found that the length of AC is of 14 cm.
What are the relations in a right triangle?The relations in a right triangle are given as follows:
The sine of an angle is given by the length of the opposite side to the angle divided by the length of the hypotenuse.The cosine of an angle is given by the length of the adjacent side to the angle divided by the length of the hypotenuse.The tangent of an angle is given by the length of the opposite side to the angle divided by the length of the adjacent side to the angle.Researching this problem on the internet, we have that:
The opposite leg to angle A is of 48 cm.sin(A) = 0.96.Hence the hypotenuse is found as follows:
sin(A) = 48/h
0.96 = 48/h
h = 48/0.96
h = 50 cm.
The length of side AC is the other leg of the triangle, found using the Pythagorean Theorem, hence:
\(x^2 + 48^2 = 50^2\)
\(x^2 = \sqrt{50^2 - 48^2}\)
x = 14 cm.
More can be learned about relations in a right triangle at https://brainly.com/question/26396675
#SPJ1
You need a 25% alcohol solution. On hand, you have a 360 mL of a 10% alcohol mixture. You also
have 55% alcohol mixture. How much of the 55% mixture will you need to add to obtain the desired
solution?
You will need
mL of the 55% solution
you will need 180 mL of the 55% alcohol mixture to create a 25% alcohol solution.
How to solve the question?
To find out how much of the 55% alcohol mixture is needed to create a 25% alcohol solution, we can use the formula:
(amount of pure alcohol in the 10% mixture + amount of pure alcohol in the 55% mixture) / total volume of solution = desired alcohol concentration
Let x be the amount of the 55% alcohol mixture needed.
First, we need to calculate the amount of pure alcohol in the 10% mixture. We know that the 10% mixture contains 10% alcohol, which means that there are 0.10 x 360 = 36 mL of pure alcohol in the mixture.
Next, we need to calculate the amount of pure alcohol in the 55% mixture. We know that the 55% mixture contains 55% alcohol, which means that there are 0.55 x x = 0.55x mL of pure alcohol in the mixture.
The total volume of the solution will be 360 mL + x mL.
Using the formula above, we can set up the equation:
(36 + 0.55x) / (360 + x) = 0.25
Simplifying the equation, we get:
36 + 0.55x = 0.25(360 + x)
36 + 0.55x = 90 + 0.25x
0.3x = 54
x = 180 mL
Therefore, you will need 180 mL of the 55% alcohol mixture to create a 25% alcohol solution.
To know more about volume visit :-
https://brainly.com/question/463363
#SPJ1
Makayla is a botanist studying production of coconuts by two different groups of her coconut palms. She notices that Group 1 trees produce 25 percent more coconuts than Group 2. based on Makayla's observation, if Group 1 produced 150 coconuts, how many coconuts did group 2 produce?
If Group 1 trees produce 25 percent more coconuts than Group 2, proportionately, Group 2 trees produce 120 coconuts.
What is proportion?Proportion refers to the two ratios equated to each other.
Proportion shows how much quantity or value is contained in another.
We depict proportions using fractional values, such as fractions, decimals, and percentages.
The number of coconuts produced by Group 1 trees = 150
The percentage by which Group 1 trees produce more than Group 2 = 25%
Let Group 1's production compared to Group 2's = 1.25 (100% + 25%)
Let Group 2's production = 100% = 150/125 x 100
= 120 coconuts
Thus, Group 2 trees would produce 120 coconuts compared to Group 1 trees that produced 150, which was proportionately, 25% more.
Learn more about proportions at https://brainly.com/question/1496357
#SPJ1
1.172 as a percentage?
Answer: 117.2%
Step-by-step explanation:
Multiply both numerator and denominator by 100. We do this to find an equivalent fraction having 100 as the denominator.
Multiply both numerator and denominator by 100. We do this to find an equivalent fraction having 100 as the denominator.
= (1.172 × 100) × 1/100=117.2/100
Write in percentage notation: 117.2%
Answer:
1.172 as a percent is 117.2%
Step-by-step explanation:
To turn a decimal into a percent just move the decimal point(.) 2 spaces back.
To turn a Percent to a decimal move the move the decimal (.) two spaces up.
(If you dont see the decimal in the Percent it is alway behind the the last number) EX: 70% would be .70 as a decimal.
Luggage checked-in at Airline A arrives on time to its intended destination with a probability of 0.63. In a random sample of 2000 bags, what would be the mean number of bags (out of the 2000) that arrive on time to its intended destination. Also find the standard deviation. Group of answer choices
Answer:
The mean number of bags that arrive on time to its intended destination is 1260 with a standard deviation of 21.59.
Step-by-step explanation:
For each bag, there are only two possible outcomes. Either it arrives on time to it's intended destination, or it does not. The probability of a bag arriving on time is independent of other bags. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The expected value of the binomial distribution is:
\(E(X) = np\)
The standard deviation of the binomial distribution is:
\(\sqrt{V(X)} = \sqrt{np(1-p)}\)
Luggage checked-in at Airline A arrives on time to its intended destination with a probability of 0.63.
This means that \(p = 0.63\)
In a random sample of 2000 bags
This means that \(n = 2000\)
Mean and standard deviation of the number of bags that arrive on time to its intended destination:
\(E(X) = np = 2000*0.63 = 1260\)
\(\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{2000*0.63*0.37} = 21.59\)
The mean number of bags that arrive on time to its intended destination is 1260 with a standard deviation of 21.59.
A hospital needs a supply of an expensive medicine. Company A has the most supply available, 1.7 milligrams, which is twice
the difference between the weight of Company B's supply and Company C's, and 0.9 milligram more than Company C's supply.How many milligrams can the hospital get from these three companies?
The hospital can get 4.15 milligrams from these three companies.
A linear equation is one in which the highest power of any variable is not more than 1. A linear equation in 2 variables can be solved by substitution method, if we have two simultaneous equations.
Here, we know that
Company A's supply of medicine = 1.7 mg
also, company A's supply = 2( B's supply - C's supply)
⇒ 1.7 = 2( B - C)
⇒ 1.7 = 2B - 2C .... (1)
Moreover, we are given that
A's supply = C's supply + 0.9
⇒ 1.7 = C + 0.9
⇒ 1.7 - 0.9 = C
⇒ 0.8 = C
Now, substituting the value of C in (1), we get,
1.7 = 2B - 2(0.8)
1.7 = 2B - 1.6
1.7 + 1.6 = 2B
⇒ B = 3.3/2
B = 1.65
Thus, the total supply from all three companies is (1.7 + 1.65 + 0.8) = 4.15 mg
Learn more about Linear equations here-
https://brainly.com/question/13729904
#SPJ9
Elroy bought a $4210 custom video gam e/ virtual sound system on a special no-interest plan. He made
The amount of the last payment that Elroy will make is $710, which includes the $200 monthly payment and a balance of $510.
How is the last payment determined?The last payment amount is the result of the mathematical operations of subtraction and multiplication.
The first mathematical operation was the subtraction of the down payment from the total cost of the video game system.
Using multiplication, the monthly payments are determined to be $3,400 for 17 months. This is subtracted from the remaining balance to obtain the last payment amount.
The cost of a custom video game/virtual sound system = $4,210
Down payment = $100
The remaining balance for monthly payment = $4,110 ($4,210 - $100)
Payment period = 18 months (1¹/₂ years)
Monthly payments = $200
Payment for the first 17 months = $3,400 (17 x 200)
Last payment = $710 ($4,110 - $3,400)
Thus, if Elroy makes the minimum monthly payment of $200 till the last payment, then he will pay $710 to settle the account.
Learn more about mathematical operations at https://brainly.com/question/20628271
#SPJ1
Question Completion:He made a $100 down payment and agreed to pay the entire purchase off in 1 1/2 years The minimum monthly payment is $200 if he makes the minimum monthly payment up until the last payment what will be the amount of his last payment?
An examination paper has 150 multiple-choice questions of one mark each, with each question having four choices. Each incorrect answer fetches -0.25 mark. Suppose 1000 students choose all their answers randomly with uniform probability. The sum total of the expected marks obtained by all these students is?
The sum of expected marks is given as follows:
9375.
How to obtain the expected marks?Each question has four choices, hence the probability of choosing the correct choice is given as follows:
p = 1/4 = 0.25.
Then the expected number of correct answers is given as follows:
E(X) = 0.25 x 150
E(X) = 37.5.
Then the expected grade for a single student is given as follows:
37.5 - 0.25(150 - 37.5) = 9.375.
The expected sum for the 1000 students is then given as follows:
1000 x 9.375 = 9375.
Learn more about the concept of probability at https://brainly.com/question/24756209
#SPJ1
4. For each babysitting job. Adam charges a fee for his bus fare plus an hourly rate. The graph shows how he calculates the cost of a babysitting job. Write a linear function in the form
y = mx + b to represent the situation.
Ay = 3x+2
B. y = 3x+1
C. y = 6x +2
D. y =-6x+2
The equation of the graph is,
⇒ y = 6x + 2
Since, The equation of line in point-slope form passing through the points
(x₁ , y₁) and (x₂, y₂) with slope m is defined as;
⇒ y - y₁ = m (x - x₁)
Where, m = (y₂ - y₁) / (x₂ - x₁)
We have to given that;
For each by sitting job. Adam charges a fee for his bus fare plus an hourly rate.
And, The graph shows how he calculates the cost of a babysitting job.
Now, By graph;
Two points on the line are (1, 8) and (2, 14).
Now,
Since, The equation of line passes through the points (1, 8) and (2, 14).
So, We need to find the slope of the line.
Hence, Slope of the line is,
m = (y₂ - y₁) / (x₂ - x₁)
m = (14 - 8)) / (2 - 1)
m = 6 / 1
m = 6
Thus, The equation of line with slope 6 is,
⇒ y - 8 = 6 (x - 1)
⇒ y - 8 = 6x - 6
⇒ y = 6x + 2
Therefore, The equation of line will be;
⇒ y = 6x + 2
Learn more about the equation of line visit:
https://brainly.com/question/18831322
#SPJ1
25% of what number is 17 ?
Answer:
it's 68...............
Answer:
68
Step-by-step explanation:
so 25% of x=17
17*4=68
The length of a rectangle is 4 in longer than its width.
If the perimeter of the rectangle is 40 in, find its area.
Answer:
Step-by-step explanation:
Let, width = x
length = x+4
perimeter, 2(x+4+x) = 40
4x+8 = 40
4x = 32
x = 8
so, (x+4) = 8+4 = 12
so, the area would be,
= 12 * 8 = 96 in²
If m∠J = 44°, what is m∠I?
Answer:
6666
Step-by-step explanation:
A rectangular prism has a length of 3 1/2 feet, a width of 5 1/3 feet, and a height of 12 feet. What is the volume of the prism?
Answer:
The answer is 1054ft³
Step-by-step explanation:
Volume of rectangular prism =1/3LWH
V=1/3×31/2×51/3×12
V=1054ft³
Decide if each statement below is
true or false.
45 tens is equal to 450.
12.3 is equal to 123 ones.
80 tens is greater than 6 hundreds.
43,200 is less than 50 thousands.
60 hundreds = 6,000
(a) 45 tens is equal to 450. :- True
(b) 12.3 is equal to 123 ones. :- True
(c) 80 tens is greater than 6 hundreds. :- True
(d) 43,200 is less than 50 thousands. :- True
(e) 60 hundreds = 6,000 :- True
Consider the first statement,
45 tens are equal to 450
So, 45 tens mean 45 times 10 is written as:
45 × 10 = 450
Hence, it's true.
Consider the second statement,
12.3 is equal to 123 ones.
Now, 123 ones is equal to 123 times 1.
123 × 1 = 123
Hence, the statement is true.
Consider the third statement,
80 tens is greater than 6 hundreds.
Now 80 tens = 80 × 10 = 800
Now, 6 hundreds = 6 × 100 = 600
Now, 800 > 600
Hence, the statement is true.
Consider the fourth statement.
43,200 is less than 50 thousands.
Now, 50 thousands = 50 × 1000 = 50,000
We know,
50,000 > 43,200
Therefore, the statement is true.
Consider the fifth statement,
60 hundreds = 6000
Now, 60 hundreds = 60 × 100 = 6000
Therefore, the statement is true.
Learn more about thousands and hundreds here:
https://brainly.com/question/15226779
#SPJ9