Suppose $2000 is deposited in a bank account with an annual compound interest rate of 3%. After two years, we will have accumulated 121.80 in interest on your initial 2000 deposit.
What is compound interest?Compound interest is, to put it simply, interest that is earned on interest. Compound interest is interest that is earned on both the initial principal and interest that builds up over time in a savings account.
There may be a difference in the timing of when interest is paid out and compounded. For instance, interest on a savings account may be paid monthly but compounded daily. The account balance plus any interest that has accrued but has not yet been paid out are used by the bank to determine your daily interest earnings.
For the above question:
Account Balance = Principal x (1 + interest rate (decimal))^number of the years. With given information this is: \(2000 (1.03)^2\) = 2,121.80. So we will earn 121.80 in interest after the 2 years on your original 2000 deposit.
To know more about compound interest visit: https://brainly.com/question/14295570
#SPJ9
Express the graph shown using interval notation. Also express it as an inequality involving x.
Okay, here we have this:
Considering the provided graph, we obtain the following:
We can see in the graph that the interval that starts at -6, where it is closed, and goes up to 3, where it is an open, then we have: [-6, 3), and the inequality is -6≤x<3.
Then, the correct answer is the first option.
The cost to rent a dump truck is $50 per day plus $26 per hour of use. What is the maximum number of hours the truck can be used each day if the rental cost should not exceed $193 per day?
Answer:
solve 26x+50=193 which equals 5.5
Step-by-step explanation:
help plss c:
a family wishes to determine the distance from their home to the nearest park. on a coordinate grid, the house sits at (0,0), and the park at (16,11)
using 1 unit = 10 yards, which vector represents the path from the house to the park, and what is the actual distance between them?
Answer:
components: {16,11}, distance: 194.16 yards
Step-by-step explanation:
to find the length of a point to another point that has different y and x points you use the pythagorean theorem (a^2 + b^2 = c^2)
16 and 11 are the distances from her house
16^2 + 11^2 = c^2
c^2 = 377
c = 19.416...
but we dont stop here
we have to convert this to yards by multiplying it by ten
19.416 * 10 = 194.16 yards
Answer:
B
Step-by-step explanation:
Just did the test
(1) Using the Black/Scholes Option Pricing Model, calculate the value of the call option given: S=74; X=70;T=6 months; σ2=.50 Rf=10% (2) What is the intrinsic value of the call? (3) What stock price is necessary to break-even? 4 If volatility were to decrease, the value of the call would (5 If the exercise price would increase, the value of the call would ? 6 If the time to maturity were 3-months, the value of the call would ? 77 If the stock price were $62, the value of the call would ? 8 What is the maximum value that a call can take? Why?
(1) Using the Black/Scholes Option Pricing Model, the value of the call option is $7.70.
(2) The intrinsic value of the call is the difference between the stock price and the strike price of the option. Therefore, it is $4.
(3) The stock price required to break-even is the sum of the strike price and the option premium. Therefore, it is $74.
(4) If volatility were to decrease, the value of the call would decrease.
(5) If the exercise price would increase, the value of the call would decrease.
(6) If the time to maturity were 3-months, the value of the call would decrease.
(7) If the stock price were $62, the value of the call would be zero.
(8) The maximum value that a call option can take is unlimited.
In the Black/Scholes option pricing model, the value of a call option can be calculated using the formula:
C = S*N(d1) - X*e^(-rT)*N(d2)
where S is the stock price, X is the exercise price, r is the risk-free rate, T is the time to maturity, and σ2 is the variance of the stock's return.
Using the given values, we can calculate d1 and d2:
d1 = [ln(S/X) + (r + σ2/2)T]/(σ2T^(1/2))
= [ln(74/70) + (0.10 + 0.50/2)*0.5]/(0.50*0.5^(1/2))
= 0.9827
d2 = d1 - σ2T^(1/2) = 0.7327
Using these values, we can calculate the value of the call option:
C = S*N(d1) - X*e^(-rT)*N(d2)
= 74*N(0.9827) - 70*e^(-0.10*0.5)*N(0.7327)
= $7.70
The intrinsic value of the call is the difference between the stock price and the strike price of the option. Therefore, it is $4.
The stock price required to break-even is the sum of the strike price and the option premium. Therefore, it is $74.If volatility were to decrease, the value of the call would decrease. This is because the option's value is directly proportional to the volatility of the stock.
If the exercise price would increase, the value of the call would decrease. This is because the option's value is inversely proportional to the exercise price of the option.
If the time to maturity were 3-months, the value of the call would decrease. This is because the option's value is inversely proportional to the time to maturity of the option.If the stock price were $62, the value of the call would be zero. This is because the intrinsic value of the call is zero when the stock price is less than the strike price.
The maximum value that a call option can take is unlimited. This is because the value of a call option is directly proportional to the stock price. As the stock price increases, the value of the call option also increases.
To learn more about break-even: https://brainly.com/question/21137380
#SPJ11
12. The surface area of a cube is 24 cm².
(i) Find the length of its edge.
(ii) Find its volume.
Answer:
Given :-surface area of a cube is 24 cm².
To find :-➡Edge length = ?
➡ volume = ?
Formula usedTotal Surface Area = 6(edge)²
Volume of cube = (edge)³
Solution:-i) surface area of a cube is 24 cm²
⇒ 6(edge)² = 24
⇒ (edge)² = 24/6
⇒ (edge)² = 4
⇒ (edge) = √4 = + 2 ( as edge length cannot be negative)
Hence, edge of the cube is 2 cm
ii) volume = ?
volume= (edge)³
volume = (2)³
volume = 8 cm³
Hense, volume of the cube is 8cm³
Additional information--Cube: A cube is a three-dimensional shape that is defined in the XYZ plane. It has six faces, eight vertices and twelve edges. All the faces of the cube are square in shape and have equal dimensions.Formulae:-Cube:-Total Surface Area = 6(edge)²Lateral Surface Area = 4 (edge)²Volume of cube = (edge)³Diagonal of a cube = √3(edge)Perimeter of cube = 12 × edge.\( \large \:\sf \underline{Explanation.}\)
\(\sf{\underline{Given}}\)
\( \sf \: surface \: area \: = \: 24 {cm}^{2} \)\(\sf{\underline{Formula}}\)
TSA = 6a²Volume = a³\( \sf \: {Let's \: Begin}\)
(i) Find the length of its edge.
Let edge = x
We know that,
TSA of cube = 6a²
6a² = 24
a² = 24/6
a² = 4
a = √ 4 { Ignore negative value}
a = 2
\( \bf \pink{length \: of \: edge \: \: = \: 2 \: cm}\)
(ii) Find its volume.
We know that,
(2)³
= 8
\( \bf \green{volume \: = \: 8 \: cm {}^{3} }\)
Thus ,
Edge = 2 cmVolume = 8 cm³\( \red {\rule{ \170pt}{4pt}}\)
Is this function linear or non linear (look at photo)
Answer:
Linear
Step-by-step explanation:
The x value side goes up by 7 while y values are going down by 5. Its a constant proportionality of 7 and 5.
In February, Robbins and Myers, Inc. executed a 2-for-1 split. Janine had 470 shares before the split. Each share was worth $69.48.
a. How many shares did she hold after the split?
b. What was the post-split price per share?
c. Show that the split was a monetary non-event for Janine.
In February, Robbins and Myers, Inc. executed a 2-for-1 split, then the
(a) . The shares did she hold after the split is 940 shares.
(b) . The post-split price per share is $34.74
(c) . Janine didn't gain or lose any money during the event.
Based on the given conditions,
In February, Robbins and Myers, Inc. executed a 2-for-1 split.
That means,
2 - for - 1 stock split.
= 2 / 1
= 2
(a) . How many shares did she hold after the split?
Then,
Janine had 470 shares before the split.
Each share was worth $69.48.
= 470 shares * 2
= 940 shares
Hence,
The shares did she hold after the split is 940 shares.
(b) . What was the post-split price per share?
Each share was worth $69.48.
Then,
= $69.48/2
= $34.74
Hence,
The post-split price per share is $34.74
(c) . Show that the split was a monetary non-event for Janine
We can write,
After the split, Janine had 940 share worth $34.74.
Since they doubled the amount of share, but decrease the amount of each share.
So,
Janine didn't gain or lose any money during the event.
Therefore,
Robbins and Myers, Inc. executed a 2-for-1 split,
(a) . The shares did she hold after the split is 940 shares.
(b) . The post-split price per share is $34.74
(c) . Janine didn't gain or lose any money during the event.
To learn more about information visit Gain or lose :
brainly.com/question/15693507
#SPJ1
Tyler earns $9.80 per hour for a regular work week of 40 hours. For each hour he works over 40 hours in a week, he earns 1 1 2 times his hourly pay. How much will Tyler earn if he works 48 hours in one week?
Answer:
$509.60 is how much he will make in total.
Step-by-step explanation:
Create an equation from the word problem and solve.
Dale mixed 5.9 grams of salt into a pot of soup he was cooking. Before he served the soup, Dale added 0.31 grams of salt. How much salt did Dale put into the soup in all? EXPLAIN what you need to do, and solve it. QUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIICKKKKKKKKKKKKKKKKKKKKK
Answer:
Dale put 6.21 grams of salt into the soup in all
Step-by-step explanation:
Arithmetic
There are situations where different mathematic operations must be done in order to find the required results. Four operations are known as basics in arithmetic: addition, subtraction, multiplication, and division.
The question describes how Dale added 5.0 grams of salt into a pot of soup and then he added 0.31 grams of salt more. This means the total amount of salt added by Dale into the soup is the sum of both quantities:
Total salt added = 5.9 grams + 0.31 grams = 6.21 grams.
Dale put 6.21 grams of salt into the soup in all
The length of a rectangular fence is 1 foot longer the width. The area is 132 feet^2. How long is the length of the fence?
xx+1=132=131=xx=x=131/x
show that the negative multinomial log-likelihood (10.14) is equivalent to the negative log of the likelihood expression (4.5) when there are m
The negative multinomial log-likelihood (Equation 10.14) is equivalent to the negative log of the likelihood expression (Equation 4.5) when there are 'm' categories.
Let's start by defining the negative multinomial log-likelihood (Equation 10.14) and the likelihood expression (Equation 4.5).
The negative multinomial log-likelihood (Equation 10.14) is given by:
L(θ) = -∑[i=1 to m] yₐ log(pₐ)
Where:
L(θ) represents the negative multinomial log-likelihood.
θ is a vector of parameters.
yₐ is the observed frequency of category i.
pₐ is the probability of category i.
The likelihood expression (Equation 4.5) is given by:
L(θ) = ∏[i=1 to m] pₐ
Where:
L(θ) represents the likelihood.
θ is a vector of parameters.
yₐ is the observed frequency of category i.
pₐ is the probability of category i.
To show the equivalence between the negative multinomial log-likelihood and the negative log of the likelihood expression, we need to take the logarithm of Equation 4.5 and then negate it.
Taking the logarithm of Equation 4.5:
log(L(θ)) = ∑[i=1 to m] yₐ log(pₐ)
Negating the logarithm of Equation 4.5:
-N log(L(θ)) = -∑[i=1 to m] yₐ log(pₐ)
Comparing the negated logarithm of Equation 4.5 with Equation 10.14, we can see that they are equivalent expressions. Therefore, the negative multinomial log-likelihood is indeed equivalent to the negative log of the likelihood expression when there are 'm' categories.
To know more about expression here
https://brainly.com/question/14083225
#SPJ4
There are 30 boys in 6th grade. The number of girls in 6th grade is 40. Abigail says that means the ratio of the number of boys in 6th grade to the number of girls in 6th grade is 4:3. Is Abigail correct? If not, what is the correct answer?
coins
You can earn 5 coins
Hint
Try writing two equivalent fractions with a variable representing the unknown quantity and then solving for the variable. For example, if a:b is equivalent to c:d, then ab=cd.
Correct Ratio10:203:43:7
Answer:
No because in question the boys is first and girls are second so according to your question the correct ratio is 3:4
Step-by-step explanation:
If you like my answer than please mark me brainliest thanks
scalccc4 8.7.024. my notes practice another use the binomial series to expand the function as a power series. f(x) = 2(1-x/11)^(2/3)
The power series expansion of f(x) is:
f(x) = 2 - (10/11)x + (130/363)x^2 - (12870/1331)x^3 + ... (for |x/11| < 1)
We can use the binomial series to expand the function f(x) = 2(1-x/11)^(2/3) as a power series:
f(x) = 2(1-x/11)^(2/3)
= 2(1 + (-x/11))^(2/3)
= 2 ∑_(n=0)^(∞) (2/3)_n (-x/11)^n (where (a)_n denotes the Pochhammer symbol)
Using the Pochhammer symbol, we can rewrite the coefficients as:
(2/3)_n = (2/3) (5/3) (8/3) ... ((3n+2)/3)
Substituting this into the power series, we get:
f(x) = 2 ∑_(n=0)^(∞) (2/3) (5/3) (8/3) ... ((3n+2)/3) (-x/11)^n
Simplifying this expression, we can write:
f(x) = 2 ∑_(n=0)^(∞) (-1)^n (2/3) (5/3) (8/3) ... ((3n+2)/3) (x/11)^n
Therefore, the power series expansion of f(x) is:
f(x) = 2 - (10/11)x + (130/363)x^2 - (12870/1331)x^3 + ... (for |x/11| < 1)
Learn more about power series here:
https://brainly.com/question/29896893
#SPJ11
to ensure your safety while driving and from having your vehicle stolen, it is advised you always have your car doors locked. what percentage of stolen vehicles is attributed to having unlocked doors? 50 % 60 % 70% 80 %
Approximately 60% of stolen vehicles are attributed to having unlocked doors.
To ensure your safety while driving and protect your vehicle from theft, it is advisable to always lock your car doors. When it comes to stolen vehicles, a significant percentage can be attributed to having unlocked doors.
Based on the options provided, the correct answer would be 60%. Approximately 60% of stolen vehicles are attributed to having unlocked doors. This means that a majority of vehicle thefts could have been prevented if the car doors were locked.
Locking your car doors serves as a deterrent to potential thieves and makes it more difficult for them to gain access to your vehicle. It adds an extra layer of protection and reduces the chances of your car being stolen.
Remember, it's important to not only lock your car doors but also take other preventive measures such as parking in well-lit areas, not leaving valuable items visible in your car, and using additional security devices like steering wheel locks or car alarms.
By following these safety precautions and keeping your car doors locked, you can significantly reduce the risk of your vehicle being stolen.
Learn more about percentage here at:
https://brainly.com/question/24877689
#SPJ11
What is the variable equal to?
t • 7 = 63
t = 12
t = 8
t = 9
t = 441
Answer:
The variable t is equal to 9.
Step-by-step explanation:
We are given t • 7 = 63. To solve this for t, we divide both sides of this equation by 7, obtaining:
t = 63/7 = 9
The variable t is equal to 9.
Which transformation would take figure A to figure B?
Someone please help me ill give you brainlist answer!!
What is the recursive formula when given the explicit formula for the following geometric sequence?
Answer:
D. a[1] = 12; a[n] = 33·a[n-1]
Step-by-step explanation:
You can make the correct choice by seeing what you get with n=1 and n=2 in the various expressions.
In general,
an = a1·r^(n-1)
For n=1, the value of this is ...
a1 = a1·r^(1-1) = a1·r^0 = a1 . . . . as you expect.
That is, the a1 term of the recursive formula is the leading coefficient in the explicit formula.
__
For n=2, you have ...
a2 = a1·r(2-1) = a1·r
That is, the previous term was multiplied by r. In the given explicit formula, r=33, so the recursive formula will tell you ...
a[n] = 33·a[n-1]
__
Altogether, we have ...
\(\boxed{a_1=12,\ a_n=33a_{n-1}}\)
Complete the point-slope equation of the line through (-1,-10)(−1,−10)left parenthesis, minus, 1, comma, minus, 10, right parenthesis and (5,2)(5,2)left parenthesis, 5, comma, 2, right parenthesis.
Answer:
y + 10 =2( x +1)
or
y -2 + 2( x -5)
These both name the same line.
Step-by-step explanation:
First we need to find the slope. The slope is the change in y over the change in x. In the point (-1,-10)
-1 is the x and -10 is the y.
In the point (5,2)
5 is the x and 2 is the y.
\(\frac{2- -10)}{5 - -1)}\) Subtracting a negative is the same as adding a positive.
\(\frac{2+ 10}{5+1}\) = \(\frac{12}{6}\) = 2
We know know the slope. We will use the form
y - \(y_{1}\) = m (x-\(x_{1}\)) we will plug in the numbers that we know.
If we use point (-1, -10)
y -- -10 = 2(x - -1)
y + 10 = 2( x+1)
If we use the point (5,2)
y -2 = 2(x -5)
Both equations mean the same thing.
Can you please help?
Answer:
Your answer is D
Step-by-step explanation:
45 divided by 5 equals 9
Answer:
easy 45 dived by 9 is 5
Step-by-step explanation:
hope it helps
find the area of one loop of r=cos(3 theta)
Step-by-step explanation:
integral from 0 to 2pi of cos3x
(sin3x)/3 from 0 to 2 pi
sin 6pi /3 - sin 0 /3 = 0
solve for x : 4 (1 - x) + 2x = -3 (x+1)
Answer: x=-7
Step-by-step explanation:
A production line is equipped with two quality control check points that tests all items on the line. At check point =1, 10% of all items failed the test. At check point =2, 12% of all items failed the test. We also know that 3% of all items failed both tests. A. If an item failed at check point #1, what is the probability that it also failed at check point #22 B. If an item failed at check point #2, what is the probability that it also failed at check point =12 C. What is the probability that an item failed at check point #1 or at check point #2? D. What is the probability that an item failed at neither of the check points ?
The probabilities as follows:
A. P(F2|F1) = 0.3 (30%)
B. P(F1|F2) = 0.25 (25%)
C. P(F1 or F2) = 0.19 (19%)
D. P(not F1 and not F2) = 0.81 (81%)
To solve this problem, we can use the concept of conditional probability and the principle of inclusion-exclusion.
Given:
P(F1) = 0.10 (Probability of failing at Check Point 1)
P(F2) = 0.12 (Probability of failing at Check Point 2)
P(F1 and F2) = 0.03 (Probability of failing at both Check Point 1 and Check Point 2)
A. To find the probability that an item failed at Check Point 1 and also failed at Check Point 2 (F2|F1), we use the formula for conditional probability:
P(F2|F1) = P(F1 and F2) / P(F1)
Substituting the given values:
P(F2|F1) = 0.03 / 0.10
P(F2|F1) = 0.3
Therefore, the probability that an item failed at Check Point 1 and also failed at Check Point 2 is 0.3 or 30%.
B. To find the probability that an item failed at Check Point 2 given that it failed at Check Point 1 (F1|F2), we use the same formula:
P(F1|F2) = P(F1 and F2) / P(F2)
Substituting the given values:
P(F1|F2) = 0.03 / 0.12
P(F1|F2) = 0.25
Therefore, the probability that an item failed at Check Point 2 and also failed at Check Point 1 is 0.25 or 25%.
C. To find the probability that an item failed at either Check Point 1 or Check Point 2 (F1 or F2), we can use the principle of inclusion-exclusion:
P(F1 or F2) = P(F1) + P(F2) - P(F1 and F2)
Substituting the given values:
P(F1 or F2) =\(0.10 + 0.12 - 0.03\)
P(F1 or F2) = 0.19
Therefore, the probability that an item failed at either Check Point 1 or Check Point 2 is 0.19 or 19%.
D. To find the probability that an item failed at neither of the check points (not F1 and not F2), we can subtract the probability of failing from 1:
P(not F1 and not F2) = 1 - P(F1 or F2)
Substituting the previously calculated value:
P(not F1 and not F2) = 1 - 0.19
P(not F1 and not F2) = 0.81
Therefore, the probability that an item failed at neither Check Point 1 nor Check Point 2 is 0.81 or 81%.
In conclusion, we have calculated the probabilities as follows:
A. P(F2|F1) = 0.3 (30%)
B. P(F1|F2) = 0.25 (25%)
C. P(F1 or F2) = 0.19 (19%)
D. P(not F1 and not F2) = 0.81 (81%)
For more questions on probability
https://brainly.com/question/25870256
#SPJ8
(3x^5+8x^3-10x^2)-(-12x^5+4x^3+14x^2)
Answer:x
2
(
15
x
3
+
4
x
−
24
)
Step-by-step explanation:
Afrah wants to buy a coat from Japan. It costs ¥7 320.50. She will have to pay shipping of £25.30. She has found a company that will charge her £80 for the coat and shipping combined. The exchange rate is currently £2 : ¥292.82. Should Afrah use the company or buy the coat and pay for shipping herself? Give a mathematical explanation.
Answer:
She should buy the coat and pay for shipping
Step-by-step explanation:
Set up a proportion to express the the 80 pounds to yen.
\(\frac{2}{292.82}\) = \(\frac{80}{x}\)
2 x 40 = 80
292.82 x 40 = 11,712.80
230.50 + 25.30 = 255.8
255.80 < 11,712.80
Helping in the name of Jesus.
Your friend Mel says he has an easier way to solve this problem. Here are the first steps in his method.
First, isolate all of the x-terms on the left side. This leaves a constant on the right that isn't equal to 0.
Factor the GCF out of the terms on the left side.
If there's a whole-number factor on the left side, divide both sides by that number. Notice that after you do this, one factor on the left is just x.
Apply Mel's steps to your equation in question 1. (5 points)
The original equation is 2x^2 +6x+4=24 ft.^2
Simplifying
2x2 + 6x + 4 = 24
Reorder the terms:
4 + 6x + 2x2 = 24
Solving
4 + 6x + 2x2 = 24
Solving for variable 'x'.
Reorder the terms:
4 + -24 + 6x + 2x2 = 24 + -24
Combine like terms: 4 + -24 = -20
-20 + 6x + 2x2 = 24 + -24
Combine like terms: 24 + -24 = 0
-20 + 6x + 2x2 = 0
Factor out the Greatest Common Factor (GCF), '2'.
2(-10 + 3x + x2) = 0
Factor a trinomial.
2((-5 + -1x)(2 + -1x)) = 0
Ignore the factor 2.
Subproblem 1
Set the factor '(-5 + -1x)' equal to zero and attempt to solve:
Simplifying
-5 + -1x = 0
Solving
-5 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '5' to each side of the equation.
-5 + 5 + -1x = 0 + 5
Combine like terms: -5 + 5 = 0
0 + -1x = 0 + 5
-1x = 0 + 5
Combine like terms: 0 + 5 = 5
-1x = 5
Divide each side by '-1'.
x = -5
Simplifying
x = -5
Answer:
Set the factor '(-5 + -1x)' equal to zero and attempt to solve:
-5 + -1x = 0
-5 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
-5 + 5 + -1x = 0 + 5
Combine like terms: -5 + 5 = 0
0 + -1x = 0 + 5
-1x = 0 + 5
Combine like terms: 0 + 5 = 5
-1x = 5
x = -5
Step-by-step explanation:
Determine if the data sets A and B are independent. Do these data A 65 68 96 55 92 69 89 71 40 91 43 54 91 47 51 88 84 data B 50 96 82 81 90 84 87 97 69 54 80 85 99 55 53 60 51 Bsets have the same mean? If the data sets are dependent find the equation of the regression line connecting these two data sets.
To determine if the data sets A and B are independent, we need to analyze the relationship between the two sets.
To determine if the data sets A and B are independent, we can examine their relationship. If there is no apparent relationship or correlation between the data sets, they can be considered independent. If there is a relationship between the data sets, they are dependent.
To find the means of both data sets, we sum up the values in each set and divide by the number of observations. For data set A, the mean is (65+68+96+55+92+69+89+71+40+91+43+54+91+47+51+88+84)/17 = 71.47. For data set B, the mean is (50+96+82+81+90+84+87+97+69+54+80+85+99+55+53+60+51)/17 = 74.18.
Since the means of data sets A and B are different (71.47 ≠ 74.18), we can conclude that the data sets are not the same.
As the data sets are not independent and have a relationship, we can find the equation of the regression line connecting them.
Learn more about sets here:
https://brainly.com/question/28492445
#SPJ11
Let f(x)=18/1+3^e-0.1x What is the point of maximum growth rate for the logistic function f(x)? Show all work. Round your answer to the nearest hundredth
Answer:
(0, 4.5)
Step-by-step explanation:
*The equation can be put into Desmos, to find the point, but the work to prove it is here*
f(x)=c/1+Ae^-Bx
Y=C
C=18 A=3 -B=-0.1
*Replace x with 0 in the equation, so you know 0 is the x value, and it leads you to the y value*
f(0)=18/1+3e^-o.1(0)
= 18/1+3e^0
=18/1+3(1)
=18/1+3
=18/4
=4.5
x=0 y=4.5
Maximum growth rate = (x,y) --> (0, 4.5)
Hope this helps:))!!
2a + 9 = 4 then a = _______
Answer:
\(a=\frac{-5}{2}\)
Step-by-step explanation:
\(2a+9=4\)
\(2a=4-9\)
\(2a=-5\)
\(a=\frac{-5}{2}\)
How many times will the following loop execute?
int x = 0;
do {
x++;
cout << x << endl;
}while(x < 5)
Answers:
a. - 5 times
b. - 4 times
c. - It doesn't
d. - Infinite times
e. - 6 times
Answer:
Step-by-step explanation:
The loop will run an infinite number of times
Choose the compound inequality that can be used to solve the original inequality |3x – 5| > 10.
Step-by-step explanation:
Nsjssjsjsjshsnmsksjnsnsns