Answer:
Thank you so much
Step-by-step explanation:
Answer:
ty :>
Step-by-step explanation:
If you flip three fair coins, what is the probability that you'll get all three heads?
Answer:
1/8
Step-by-step explanation:
The probability that you will get heads on any coin flip is 1/2, meaning half of the time you will get heads. The probability of this happening to you twice in a row is 1/2*1/2, as you have a probability of 1/2 of getting heads on each flip. This means the probability of getting three heads in a row is 1/2*1/2*1/2=1/8
Answer:
i would think 1/3 becuase their are three coins
Step-by-step explanation:
you hav ea 45% change of accually flipping all heads :P
evaluate the expression using scientific notation. Express the result in scientific notation.
5.4 X 10^-8/1.5 X 10^4
Answer:
We can simplify this expression as follows:
5.4 x 10^-8 / 1.5 x 10^4 = (5.4/1.5) x (10^-8 / 10^4) = 3.6 x 10^-12
Therefore, the result in scientific notation is 3.6 x 10^-12.
Calculate the mass of NaF in grams that must be dissolved in a
0.25M HF solution to form a 300 mL buffer solution with a pH of
3.5. (Ka for HF= 7.2X10^(-4))
Answer is 7.17g NaF. Please tell me at whic
To make a 300 mL buffer solution with a pH of 3.5, the mass of NaF required is 7.17 grams.
The buffer solution is created by mixing HF with NaF. The two ions, F- and H+, react to create HF, which is the acidic component of the buffer. The pKa is used to determine the ratio of the conjugate base to the conjugate acid in the solution. Let us calculate the mass of NaF required to make a 300 mL buffer solution with a pH of 3.5.
To calculate the mass of NaF, we need to know the number of moles of NaF needed in the solution. We can calculate this by first determining the number of moles of HF and F- in the buffer solution. Here's the step-by-step solution:
Step 1: Calculate the number of moles of HF needed: Use the Henderson-Hasselbalch equation to calculate the number of moles of HF needed to create a buffer with a pH of 3.5.pH
\(= pKa + log ([A-]/[HA])3.5\)
\(= -log(7.2*10^{-4}) + log ([F-]/[HF])[F-]/[HF]\)
= 3.16M/0.1M = 31.6mol/L.
Since we know that the volume of the buffer is 0.3L, we can use this value to calculate the number of moles of HF needed. n(HF) = C x Vn(HF) = 0.1M x 0.3Ln(HF) = 0.03 moles
Step 2: Calculate the number of moles of F- needed: The ratio of the concentration of F- to the concentration of HF is 31.6, so the concentration of F- can be calculated as follows: 31.6 x 0.1M = 3.16M. The number of moles of F- needed can be calculated using the following formula: n(F-) = C x Vn(F-) = 3.16M x 0.3Ln(F-) = 0.95 moles
Step 3: Calculate the mass of NaF needed: Now that we know the number of moles of F- needed, we can calculate the mass of NaF required using the following formula:
mass = moles x molar mass
mass = 0.95 moles x (23.0 g/mol + 19.0 g/mol)
mass = 7.17 g
So, the mass of NaF required to make a 300 mL buffer solution with a pH of 3.5 is 7.17 grams. Therefore, the correct answer is 7.17g NaF.
For more questions on the Henderson-Hasselbalch equation, click on:
https://brainly.com/question/13423434
#SPJ8
The correct question would be as
Calculate the mass of NaF in grams that must be dissolved in a 0.25M HF solution to form a 300 mL buffer solution with a pH of 3.5. (Ka for HF= 7.2X10^(-4))
\(3x18=3(10+8) is a example of what property
Overweight Men For a random sample of 60 overweight men, the moon of the number of pounds that they were overnight was de 28. The standard deviation of the population is 44 pounds. Part 1 of 4 (a) The best point estimate of the mean is 28 pounds. Part 2 of 4 (b) Find the 90% confidence interval of the mean of these pounds. Round Intermediate answers to at least three decimal places. Round your final answers to one decimal place 27.1 << 28.9 Part: 2/4 Submit Assignment MAGAR Reserved. Terms of Use PC Part 2/4 Part of (c) Find the 95% confidence interval of the mean of these pounds. Round intermediate answers to at least three decimal places. Round your final answers to one decimal place 26,9 <29.1 Part: 3/4 Part 4 of 4 (d) Which interval is larger? Why? The % confidence interval is larger. An interval with a (Choose one) range of values than the % confidence interval will be more likely to contain the true population mean,
The 95% confidence interval is larger because it provides a higher level of confidence and captures a wider range of values.
what is the best point estimate of the mean weight?The best point estimate of the mean is indeed 28 pounds, as provided in the information.
To find the 90% confidence interval of the mean, we can use the formula:
Confidence interval = sample mean ± (critical value) * (standard deviation / √sample size)
Using a confidence level of 90%, we find the critical value associated with a two-tailed test to be approximately 1.645 (from a standard normal distribution table).
Calculating the confidence interval:
Lower bound = 28 - (1.645 * (44 / √60)) ≈ 27.1
Upper bound = 28 + (1.645 * (44 / √60)) ≈ 28.9
Therefore, the 90% confidence interval of the mean weight for the overweight men is approximately 27.1 pounds to 28.9 pounds.
To find the 95% confidence interval of the mean, we follow the same process as in part (b) but with a different critical value. For a 95% confidence level, the critical value is approximately 1.96 (from a standard normal distribution table).
Calculating the confidence interval:
Lower bound = 28 - (1.96 * (44 / √60)) ≈ 26.9
Upper bound = 28 + (1.96 * (44 / √60)) ≈ 29.1
Therefore, the 95% confidence interval of the mean weight for the overweight men is approximately 26.9 pounds to 29.1 pounds.
The 95% confidence interval is larger than the 90% confidence interval. This is because a higher confidence level requires a wider interval to capture a larger range of possible values and provide a higher level of certainty. The 95% confidence interval is associated with a greater range of values and is more likely to contain the true population mean.
Learn more about confidence interval
brainly.com/question/32546207
#SPJ11
what describes the transformation of g(x)=3(2)-x from the parent function f(x)=2x
Answer:
Reflect across the y-axis, stretch the graph vertically by a factor of 3
Step-by-step explanation:
The question has certain errors, in fact the functions are the following:
g (x) = 3 * (2) ^ - x
f (x) = 2 ^ x
The transformation that we can do to obtain the translated graph, Are given in 2 steps, which are the following:
1. When x is replaced by -x, then it reflects the graph on the y axis.
2. 3 multiplies with the function, it means that it stretches the main function vertically in 3 units.
So to summarize it would be: Reflect across the y-axis, stretch the graph vertically by a factor of 3
If each of the n production workers in a factory assembles one instrument every t minutes, how many instruments does the factory assemble in 7.5 hours of production
Answer:
The number of instruments assembled in 7.5 hours are 450 n/t.
Step-by-step explanation:
The number of instruments assembled in t minutes = n
the number of instruments assembled in 1 minute = n / t
Total time = 7.5 hours = 7.5 x 60 = 450 minutes
So, the number of instruments assembled in 450 minutes are
\(\frac{n}{t}\times 450\\\\\frac{450 n}{t}\)
one way colors are represented in computers is with rgb, where 3 integers ranging from 0-255 inclusive are used to represent a color. if 2 integers $a$ and $b$ are used to represent a color, how many pairs $(a,b)$ are there such that their sum is divisible by 12?
There are 256 expected value for both a and b, so there are 256 x 256 = 65536 possible pairs of (a,b). Of these, there are 2112 pairs for which the sum of a and b is divisible by 12.
1. There are 256 possible values for both a and b. That means there are 256 x 256
= 65536 possible pairs of (a,b)
2. To find the number of pairs for which the sum of a and b is divisible by 12, we can look at the numbers 0 to 255 and see how many multiples of 12 there are. There are 21 multiples of 12 from 0 to 255, so
21 x 21
= 441.
3. Each multiple of 12 can be paired with any other number from 0 to 255, so there are 21 x 256 = 2112 pairs of (a,b) for which the sum is divisible by 12.
Learn more about expected value here
https://brainly.com/question/18523098
#SPJ4
the sum of a number -16 is 25
Answer: 41
Step-by-step explanation:
I'm not sure if this is what you're looking for.
-16+n=25
Add 25+16=41
-16+41=25
n=41
Find the value of AB in the given figure.
Answer:
AB = 6 cm
Step-by-step explanation:
\(In\:\triangle ABC,\:\angle B =90\degree...(Given)\\\\ side\: AB = side\: BC...(Given)\\\\\implies \angle BAC= \angle BCA= 45\degree\\\\\implies \triangle ABC\: is \: 45\degree-45\degree-90\degree \:\triangle\\\\\implies AB = \frac{1}{\sqrt 2} AC\\\\\implies AB = \frac{1}{\sqrt 2}\times 6\sqrt 2\\\\\implies AB = 6\: cm\)
Miguel ran 2 9 10 miles on Monday. On Friday, Miguel ran 5 times as far as he did on Monday. How much farther did Miguel run on Friday than he did on Monday? Miguel ran miles farther on Friday
Answer:
\(11\dfrac{3}{5}$ miles\)
Step-by-step explanation:
Miguel ran \(2\dfrac{9}{10}\) miles on Monday.
On Friday, he ran 5 times as far as he did on Monday.
Miles run on Friday
\(=5 X 2\dfrac{9}{10}\)
\(=5 X \dfrac{29}{10}\\=\dfrac{29}{2}$ miles\)
Difference in Number of Miles Run
\(=\dfrac{29}{2}-\dfrac{29}{10}\\=\dfrac{145-29}{10}\\=\dfrac{116}{10}\\=11\dfrac{3}{5}$ miles\)
Therefore, Miguel ran \(11\dfrac{3}{5}$ miles\) farther on Friday.
2x - 3y = 9; 2x + y = 13
5x + 2y = -3; x + 5y = 4
(4) sm
1
3
99x + 101y = 499; 101x + 99 y = 501
49x - 57y = 172; 57x - 49y
49y = 252
Let's recall.
1 of a linear equation in two variables
Answer:
See explanations below
Step-by-step explanation:
Given the simultaneous equations;
2x - 3y = 9... 1
2x + y = 13 ... 2
From 2;
y = 13-2x
Substitute into 1;
2x - 3(13-2x) = 9
2x -39 + 6x = 9
8x - 39 = 9
8x = 9+39
8x = 48
x = 6
Since y = 13-2x
y = 13-2(6)
y = 13-12
y = 1
The soluton to the system of equation is (6, 1)
Given the equations;
99x + 101y = 499; .... 1 * 101
101x + 99 y = 501 ... 2 * 99
______________
9999x + 10,201y = 50,399
9999x + 9801y = 49,599
Subtract
10201y - 9801y = 50399-49599
400y = 800
y = 2
Substitute y = 2 into 1;
From 1;
99x + 101y = 499
99x + 101(2) =499
99x +202 = 499
99x = 499 - 202
99x = 198
x = 198/99
x =2
Hence the solution is (2,2)
For the equations;
49x - 57y = 172 .... * 57
57x - 49y = 252 __ * 49
____________________
2793x -3249y = 9804
2793x - 2401y = 12348
Subtract
-3249y+2401y = 9804-12348
-848y = -2544
y = 3
Substitute into 1;
49x - 57y = 172
49x - 57(3) = 172
49x - 171 = 172
49x = 171+172
49x = 343
x = 7
Hence the solution is (7, 3)
A test has three true false questions. Find the total number of ways you can
answer the three questions.
Answer:
8
Step-by-step explanation:
ttt
ttf
tff
fff
fft
ftt
tft
ftf
The five values for a data set are: minimum = 0 lower quartile = 2 median = 3. 5 upper quartile = 5 maximum = 10 Bruno created the box plot using the five values. What error did he make? The right whisker should go from 3. 5 to 10. The left whisker should go from 0 to 2. The box should go from 2 to 3. 5. The box should go from 3. 5 to 5
The five values for a data set are: minimum = 0 lower quartile = 2 median = 3. 5 upper quartile = 5 maximum = 10 Bruno created the box plot using the five values. Bruno made error. The left whisker should go from 0 to 2.
About quartileQuartiles is a type of quartile that divides data into four parts with approximately the same number. The first quartile or lower quartile (Q1) is the middle value between the smallest value and the median of the data group. The first quartile is a marker that the data in that quartile is 25% below the data group.
The second quartile (Q2) is the median data which marks 50% of the data (dividing the data in half). The third or upper quartile (Q3) is the middle value between the median and the highest value of the data set. The third quartile is a marker that the data in that quartile is 75% below the data group. Quartiles are a form of an ordered statistic because to determine quartiles, data needs to be sorted from smallest to largest value first.
Learn more about quartile at https://brainly.com/question/24329548.
#SPJ4
who here thinks that life will be better this year
Answer:
I am hoping that it will
Step-by-step explanation:
if h(x) = 6 5f(x) , where f(2) = 6 and f '(2) = 5, find h'(2). h'(2)
The value of h'(2) is 25
What is the chain rule?The chain rule is a fundamental rule in calculus that provides a method to differentiate composite functions.
A composite function is a function that is formed by taking the output of one function and using it as the input of another function.
For instance, if we have two functions f(x) and g(x), then the composite function h(x) can be defined as h(x) = f(g(x)), where g(x) is the input to f(x).
here we have
h(x) = √6 + 5f(x)
Derivative of h(x) with respect to x
h'(x) = d/dx (√6 + 5f(x))
h'(x) = d/dx (√6) + d/dx (5f(x))
h'(x) = 0 + 5f'(x)
h'(x) = 5f'(x)
Now substitute x = 2 and f'(2) = 5, to find h'(2)
h'(2) = 5f'(2)
h'(2) = 5(5)
h'(2) = 25
Therefore,
The value of h'(2) is 25
Learn more about functions at
https://brainly.com/question/28777005
#SPJ1
Complete Question:
If h(x) = √6 + 5f(x), where f(2)= 6 and f'(2) = 5, find h'(2).
An airplane is heading north at an airspeed of 700 km/hr, but there is a wind blowing from the northwest at 50 km/hr.
The plane will end up flying___degrees off course
The plane's speed relative to the ground will be __km/hr
The plane's speed relative to the ground will be 736.2 km/hr
The plane will end up flying 2.72 degrees off course.
The definition of speed is the direction or speed at which an object's location changes. How quickly something moves depends on how far it has traveled in relation to how long it took to get there.
Given that an airplane is heading north at an airspeed of 700 km/hr, but there is a wind blowing from the northwest at 50 km/hr.
V2 = 7002 + 502 – 2.700.50 cos135
= 49000+2500-70000cos135
= 541997.5
= 736.2
502 = 7002 + 736.22 – 2.700.736.2 cos x
Cos x = 998845849
X = 2.720
Therefore
The plane's speed relative to the ground will be 736.2 km/hr
The plane will end up flying 2.72 degrees off course
To learn more about speed visit
https://brainly.com/question/2004627
#SPJ4
Any help? Explanation would help massively too! Work out the length of AB
Answer:
Exact length = 2*sqrt(137) cm
Approximate length = 23.409 cm
====================================================
Work Shown:
Use the Pythagorean theorem
a^2 + b^2 = c^2
8^2 + 22^2 = c^2
64 + 484 = c^2
548 = c^2
c^2 = 548
c = sqrt(548)
c = sqrt(4*137)
c = sqrt(4)*sqrt(137) ..... use the rule sqrt(x*y) = sqrt(x)*sqrt(y)
c = 2*sqrt(137) .... this is the exact length
c = 23.4093998214392 ... use your calculator to find the approximate length
c = 23.409
I rounded to three decimal places, but feel free to round however you want. Or be sure to follow any rounding instructions your teacher provides.
What information is needed to write the equation of a line in point-slope form?
The location of one ordered pair that lies on the line and the line's slope.
The line's slope and one ordered pair that is not on the line.
The location of one ordered pair on the line and one ordered pair that is not on the line.
The slope of the line and the location of the origin.
The information that is needed to write the equation of a line in point-slope form is the location of one ordered pair that lies on the line and the line's slope. The correct option is the first option
Point-slope form of the equation of a lineFrom the question, we are to determine the information that is needed to write the equation of a line in point-slope form.
The point-slope form of a line is given as
y - y₁ = m(x - x₁)
Where, (x₁, y₁) is a point on the line
and m is the slope of the line
Thus, in order to write the equation of a line in the point-slope form, the information that are needed are:
1. An ordered pair on the line
2. The slope of the line
Learn more on Point-slope form of the equation of a line here: https://brainly.com/question/11624671
#SPJ1
1. If a square-thread screw having a major diameter of 19 mm and six threads per 25. 4mm is used to lift a load of 17. 80 KN, compute the efficiency of the power screw in raising the load. Use a coefficient of friction of 0. 20
The efficiency of the power screw in raising the load is approximately 6976%.
The efficiency of a power screw can be calculated using the formula: Efficiency = (Ideal Mechanical Advantage / Actual Mechanical Advantage) x 100% To find the Ideal Mechanical Advantage (IMA) of the screw, we can use the formula:
IMA = (π / tan(α)) x (π / 2) x (D / P)
Where: π is the mathematical constant pi (approximately 3.14159) tan(α) is the coefficient of friction (given as 0.20) D is the major diameter of the screw (given as 19 mm) P is the pitch of the screw, which can be calculated as (25.4 mm / number of threads per inch) First, let's calculate the pitch: Number of threads per inch = 6
Pitch = 25.4 mm / 6 = 4.23 mm (approximately)
Now, we can substitute the values into the formula to find IMA:
IMA = (π / tan(α)) x (π / 2) x (19 mm / 4.23 mm)
Using the given coefficient of friction, we have:
IMA = (π / 0.20) x (π / 2) x (19 mm / 4.23 mm)
Simplifying the equation, we get:
IMA = 9.87 x 1.57 x 4.49
Calculating IMA, we find:
IMA ≈ 69.76
Now, we need to find the Actual Mechanical Advantage (AMA), which can be calculated using the formula:
AMA = Load / Effort
Where:
Load is the weight being lifted (given as 17.80 kN)
Effort is the force applied to turn the screw
Since the screw is being used to lift the load, the Effort is equal to the load.
AMA = 17.80 kin / 17.80 kin
AMA = 1
Now, we can calculate the efficiency using the formula:
Efficiency = (IMA / AMA) x 100%
Efficiency = (69.76 / 1) x 100%
Efficiency ≈ 6976%
The efficiency of the power screw in raising the load is approximately 6976%.
To learn more about Mechanical Advantage visit:
brainly.com/question/24056098
#SPJ11
How many arrangements can be formed using the letters in the word EPIPHANY?
Answer:
40312 arrangements
Step-by-step explanation:
there are 8 letters with two Ps.
8*7*6*5*4*3*2*1-8=40312
What is the degree of the polynomial?
Answer:
7
Step-by-step explanation:
The highest power of the given polynomial is 7. Therefore, the degree of the given polynomial is 7.
There are 3 parts to this, please help
for part 3 i need words i can use ( i will mark brainliest )
The difference between the fractions 10/12 and 3/8 will be 11 / 24.
How to calculate the fraction?A fraction simply means a piece of a whole. In this situation, the number is represented as a quotient such that the numerator and denominator are split. In this situation, in a simple fraction, the numerator as well as the denominator are both integers.
In this case, the difference between 10/12 and 3/8 will be:
= 10 / 12 - 3 / 8
= 20 / 24 - 9 / 24
= 11 / 24
Learn more about fractions on
brainly.com/question/78672
#SPJ1
what is the value of the expression when m = 2.5 and n = 5
Answer: 13.1
Step-by-step explanation:
(2.5)+(7*9)/(5) = 2.5+63/5 = 65.5/5 = 13.1
Answer:
13.1
Step-by-step explanation:
Given rational expression:
\(\dfrac{m+(7 \cdot 9)}{n}\)
To determine the value of the given expression when m = 2.5 and n = 5, substitute the given values into the expression and solve.
\(\begin{aligned}m=2.5, n=5 &\implies \dfrac{2.5+(7 \cdot 9)}{5}\\\\&\implies \dfrac{2.5+63}{5}\\\\&\implies \dfrac{65.5}{5}\\\\&\implies \dfrac{65.5 \cdot 2}{5 \cdot 2}\\\\&\implies \dfrac{131}{10}\\\\&\implies 13.1\end{aligned}\)
Solve this equation, if answer is guessed ill report your response
Answer:
The first one is
\(x=\frac{3}{a }\)
The second one is
\(x=- \frac{a }{6 }\)
The third is
\(x=-\frac{6}{a}\)
Hope this helps, it's just simple rearrangement for x!
The position of a ball dropped from the top of an 105-metre tall building is given by s(t)=105−4.9t^2 where the position s is measured in metres and time t is measured in seconds. Compute the average velocity of the ball over the given intervals, and use the values to estimate the instantaneous rate of change at t=3 s. a. [2.99,3] b. [2.999,3] c. [3,3.01] d. [3,3.001] Instantaneous Rate of Change =
The estimated instantaneous rate of change at t=3s is approximately -59.61 m/s.
To compute the average velocity of the ball over the given intervals and estimate the instantaneous rate of change at t=3s, we can calculate the average velocity by finding the change in position divided by the change in time. a. [2.99,3]: Average velocity = (s(3) - s(2.99)) / (3 - 2.99) = (105 - 4.9(3^2)) - (105 - 4.9((2.99)^2)) / (0.01) ≈ -58.49 m/s. b. [2.999,3]: Average velocity = (s(3) - s(2.999)) / (3 - 2.999) = (105 - 4.9(3^2)) - (105 - 4.9((2.999)^2)) / (0.001) ≈ -58.59 m/s.
c. [3,3.01]: Average velocity = (s(3.01) - s(3)) / (3.01 - 3) = (105 - 4.9(3.01^2)) - (105 - 4.9(3^2)) / (0.01) ≈ -59.61 m/s. d. [3,3.001]: Average velocity = (s(3.001) - s(3)) / (3.001 - 3) = (105 - 4.9(3.001^2)) - (105 - 4.9(3^2)) / (0.001) ≈ -59.59 m/s. To estimate the instantaneous rate of change at t=3s, we can take the average velocity from the interval that is closest to t=3s, which is option (c) [3,3.01]. Thus, the estimated instantaneous rate of change at t=3s is approximately -59.61 m/s.
To learn more about instantaneous rate click here: brainly.com/question/30760748
#SPJ11
The radius, r, of the circle below is 11 cm. Calculate the area of the circle. Give your answer to 1 d.p. 11 cm = πr²
Answer:
1.9 cm
Step-by-step explanation:
11 cm^2 = πr^2
11/pi = r^2
1.9 cm = r
In a bag there are blue discs, green discs and white discs.
There are eight times as many blue discs as green discs.
number of blue discs : number of white discs = 6:5
One disc is selected at random.
Work out the probability that the disc is either blue or white.
The probability that the disc is either blue or white is 11/59
Working out the probability that the disc is either blue or white.Given that
number of blue discs : number of white discs = 6:5
number of blue discs : number of green discs = 1:8
So, we have
Blue : White = 6 : 5
Blue : Green = 1 : 8
This can be expressed as
Blue : Green = 6 : 48
So, we have
Blue : White : Green = 6 : 5 : 48
So, we have
Blue or White : Green = 11 : 48
So, the probability is
P = 11/(48 + 11)
Evaluate
P = 11/59
Read more about probability at
https://brainly.com/question/24756209
#SPJ1
which subshell (for example, 1s) is designated by each set of quantum numbers below?
The subshell designated by each set of quantum numbers is as follows:
a) n=3, l=1 -> 3p subshell
b) n=4, l=2 -> 4d subshell
c) n=2, l=0 -> 2s subshell
d) n=5, l=3 -> 5f subshell
In the electron configuration of an atom, each electron is described by a set of four quantum numbers, which includes the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (m), and the spin quantum number (s). The second quantum number (l) determines the shape of the subshell, which in turn influences the energy level and chemical behavior of the atom. The letter designation for each subshell is based on the value of the angular momentum quantum number (l): s (l=0), p (l=1), d (l=2), f (l=3), and so on. Therefore, for a given set of quantum numbers, we can determine the subshell designation by identifying the value of l.
Learn more about Quantum Numbers here: brainly.com/question/14288557
#SPJ11
please help me with unit test part 3.
With the cross-sectional area of an object given as a function, the volume is (D) 4/3.
volume of the object is D, 0.33 and exact for original solid is 4/3, C.
Volume of solid for x-axis is (32π/45), C, and y-axis is (2/3)π, B
volume of the resulting washer is π(3+3m).
volume of the solid is A, (3π/2).
How to determine volume?The cross-sectional area of the object is given by A(x) = 2x - x², so the volume can be found by integrating A(x) with respect to x over the interval [0, 2]:
V = ∫[0,2] A(x) dx
V = ∫[0,2] (2x - x²) dx
V = [x² - (1/3)x³] [0,2]
V = (2² - (1/3)2³) - (0² - (1/3)0³)
V = (4 - (8/3)) - 0
V = 4/3
Therefore, the volume of the object is 4/3 cubic units.
Pic 2:
Part A:
The volume of each square prism is V = x²(0.2) = 0.2x². To approximate the original solid, add up the volumes of all five prisms:
V ≈ ∑(0.2x²) for x in {0.1, 0.3, 0.5, 0.7, 0.9}
V ≈ (0.2(0.1)²) + (0.2(0.3)²) + (0.2(0.5)²) + (0.2(0.7)²) + (0.2(0.9)²)
V ≈ 0.002 + 0.018 + 0.05 + 0.098 + 0.162
V ≈ 0.33
Therefore, the volume of the object that approximates the original solid is approximately 0.33, D.
Part B:
To find the exact volume of the original solid, integrate the area of each square cross section over the interval [0, 1]:
V = ∫(0 to 1) 4x² dx
V = [4x³/3] (0 to 1)
= 4/3
Therefore, the exact volume of the original solid is 4/3, C.
Pic 3:
Part A:
To find the volume of the solid created by revolving f(x) = 1 - x⁴ about the x-axis, use the disk method.
The cross sections of the solid are disks with radius equal to f(x), and thickness dx. The volume of each disk is π(f(x))² dx.
Therefore, the total volume of the solid is given by:
V = ∫(0 to 1) π(f(x))² dx
V = ∫(0 to 1) π(1 - x⁴)² dx
Expand the square and simplify:
V = ∫(0 to 1) π(1 - 2x⁴ + x⁸) dx
V = π[x - (2/5)x⁵ + (1/9)x⁹] (0 to 1)
V = π[(1 - (2/5) + (1/9)) - (0 - 0 + 0)]
V = (32π/45)
Therefore, the volume of the solid created by revolving f(x) about the x-axis is (32π/45), C.
Part B:
Use the shell method. The cross sections of the solid are cylindrical shells with radius x, height f(x), and thickness dx. The volume of each shell is 2πx f(x) dx.
Therefore, the total volume of the solid is given by:
V = ∫(0 to 1) 2πx f(x) dx
V = ∫(0 to 1) 2πx(1 - x⁴) dx
Simplify and integrate:
V = ∫(0 to 1) (2πx - 2πx⁵) dx
V = [πx² - (1/3)πx⁶] (0 to 1)
V = [(π - (1/3)π)] - [(0 - 0)]
V = (2/3)π
Therefore, the volume of the solid created by revolving f(x) about the y-axis is (2/3)π, B.
Pic 4:
The volume of the solid formed by revolving f(x) around the x-axis is given by:
V1 = π ∫(0 to 1) (2 + mx)² dx
V1 = π ∫(0 to 1) (4 + 4mx + m²x²) dx
V1 = π [4x + 2mx² + (m²/3)x³] (0 to 1)
V1 = π [4 + 2m + (m²/3)]
The volume of the hole formed by revolving g(x) around the x-axis is given by:
V2 = π ∫(0 to 1) (1 - mx)² dx
V2 = π ∫(0 to 1) (1 - 2mx + m²x²) dx
V2 = π [x - mx² + (m²/3)x³] (0 to 1)
V2 = π [1 - m + (m²/3)]
The volume of the resulting washer is the difference between the volumes of the solid and the hole:
V = V1 - V2
V = π [4 + 2m + (m²/3)] - π [1 - m + (m²/3)]
V = π [3 + 3m]
Therefore, the volume of the resulting washer as a function of m is π(3+3m).
For m = 0, the function f(x) = 2, and the function g(x) = 1. The solid is a cylinder with radius 2 and height 1, and the hole is a cylinder with radius 1 and height 1. The volume of the solid is:
V1 = π(2²)(1) = 4π
The volume of the hole is:
V2 = π(1²)(1) = π
Therefore, the volume of the resulting washer is:
V = V1 - V2 = 4π - π = 3π
Using the formula for a cylinder, volume of the resulting washer for m = 0 is 3π:
V = π(r1²h - r2²h) = π[(2²)(1) - (1²)(1)] = 3π
Therefore, the volume of the resulting washer is π(3+3m).
Pic 5:
Use the disk method. The cross sections of the solid are disks with radius equal to x and thickness dy. Express x in terms of y to evaluate the integral.
From the equation y = 1/x, x = 1/y, and from the equation y = x², x = √y.
Revolving the region around the y-axis, integrate with respect to y:
V = π ∫(0 to 1) (x² - (1/x)²) dy
V = π ∫(0 to 1) (y - 1/y²) dy
V = π [(y²/2) + (1/y)] (0 to 1)
V = (π/2) + π
V = (3π/2)
Therefore, the approximate volume of the solid is (3π/2), A.
Find out more on volume here: https://brainly.com/question/1972490
#SPJ1