The parametric representation for the part of the hyperboloid \($x^2 + y^2 - z^2 = 1$\) that lies to the left of the \($xz$\)-plane is:
\($$\begin{aligned} x &= \sec u\cos v\\ y &= \sec u\sin v\\ z &= \tan u\\ \pi/2 &\le v \le 3\pi/2 \end{aligned}$$\)
A parametric representation of a surface or curve is a way of expressing it using parameters. Parametric representation can be expressed as:\($$\begin{aligned} x &= f(u, v)\\ y &= g(u, v)\\ z &= h(u, v) \end{aligned}$$\)
Here we need to find a parametric representation for the part of the hyperboloid \($x^2 + y^2 - z^2 = 1$\) that lies to the left of the \($xz$\)-plane.
That is, for the region in the first and fourth quadrants of the \($xz$\)-plane.
For this, we can use the parameterization \($x = \sec u\cos v$\), \($y = \sec u\sin v$\), and \($z = \tan u$\).
With this parameterization, the condition \($x^2 + y^2 - z^2 = 1$\) becomes \($\sec^2 u - \tan^2 u = 1$\) which is always satisfied.
For the part of the hyperboloid that lies to the left of the \($xz$\)-plane, we have to restrict \($v$\) to the range \($\pi/2 \le v \le 3\pi/2$\).
This will ensure that \($x = \sec u\cos v \le 0$\).
Hence, the parametric representation for the part of the hyperboloid \($x^2 + y^2 - z^2 = 1$\) that lies to the left of the \($xz$\)-plane is:
\($$\begin{aligned} x &= \sec u\cos v\\ y &= \sec u\sin v\\ z &= \tan u\\ \pi/2 &\le v \le 3\pi/2 \end{aligned}$$\)
To know more about parametric representation, visit:
https://brainly.com/question/28990272
#SPJ11
3 1/4 divided by 1/4
Step-by-step explanation:
31/4÷1/4=1.9375 this is the answer
Given that a cylinder is made of pure gold (D=19.3 g/cm 3
) with a height (h)=22.0 cm and radius ( r) of 3.80 cm, find the mass in grams(g) of this particular cylinder. *Volume (V) of a cylinder: V=πr 2
×h 13.6 g 5070 g 51.7 g None of These 19300 g Question 8 Calculate the density (D) of a perfect cube with a mass of 0.153 kg and a L,W&H of 3.50 cm. 280 g/cm 3
0.280 g/cm 3
43.7 g/cm 3
0.00357 g/cm 3
3.57 g/cm 3
Find the density of an object with a mass of 4350mg and a volume of 2.68 cm 3
. 1620 g/cm 3
None of These 0.0162 g/cm 3
1.62 g/cm ∧
3 1620000 g/cm 3
If a metal substance is found to have a density of 18.3 g/cm 3
, what is the substance most likely to be based on known density values. (Table 1.4 in your textbook) Lead Iron Aluminum Gold Copper
To solve these problems, we'll use the provided formulas of mass and volume and calculations. The substance is most likely to be Gold.
1. Mass of the cylinder:
The volume of a cylinder is given by the formula: V = πr^2h
V = π(3.80 cm)^2 × 22.0 cm
V ≈ 64.53 cm^3
Mass (m) = Volume (V) × Density (D)
m = 64.53 cm^3 × 19.3 g/cm^3 ≈ 1246.62 g
Therefore, the mass of the cylinder is approximately 1246.62 grams. None of the provided options matches this value.
2. Density of a cube:
Density (D) is defined as the mass (m) divided by the volume (V): D = m/V
Volume of a cube is given by: V = L × W × H
Density (D) = 153 g / 42.88 cm^3 ≈ 3.57 g/cm^3Therefore, the density of the cube is approximately 3.57 g/cm^3. None of the provided options matches this value.
3. Density of an object:
Converting mass to grams: 4350 mg = 4.35 g
Density (D) = 4.35 g / 2.68 cm^3 ≈ 1.62 g/cm^3
Therefore, the density of the object is approximately 1.62 g/cm^3. None of the provided options matches this value.
4. Identifying the substance based on density:
- Lead: Density ≈ 11.3 g/cm^3
- Iron: Density ≈ 7.87 g/cm^3
- Aluminum: Density ≈ 2.70 g/cm^3
- Gold: Density ≈ 19.3 g/cm^3
- Copper: Density ≈ 8.96 g/cm^3
Among the provided options, the substance most likely to be based on the known density values is Gold, as its density closely matches the given value of 18.3 g/cm^3.
So, the substance is most likely to be Gold.
Learn more about volume here:
brainly.com/question/14197390
#SPJ11
Which is bigger 2 ^845 or 5 ^362?
Answer:
2^845 is greater than 5^362.
Step-by-step explanation:
To compare the two numbers, we can evaluate them using the logarithm function with base 2 and base 5 respectively.
2^845 = 2^(845 * log2(2)) = 2^(845 * 1) = 2^845
5^362 = 5^(362 * log5(5)) = 5^(362 * 1) = 5^362
The logarithm of a number is the exponent to which the base must be raised to give that number. Since logarithm function is a monotonically increasing function, if we compare log base a of x to log base a of y, logarithm of x is greater than y if x is greater than y.
So 2^845 > 5^362 if 845 > 362 * log5(2)
We can calculate log5(2) = log5(2)/log5(2) = 0.6309
so 845 > 362 * 0.6309
845 > 229.8198
so 845 is greater than 229.8198, therefore 2^845 is greater than 5^362.
Answer:
Step-by-step explanation:
2^845 = 2^5(2^7)^120 = 32(128)^120,
5^362 = 5^2(5^3)^120 = 25(125)^120,
2^845 is bigger.
-6x+11 = 7-10x show all work
Answer:
Step-by-step explanation:
collect like terms ( when a negative sign crosses the equality sign it becomes positive and vice versa)
-6x + 10x=7-11
4x=-4
divide both sides by the coefficient of x
4x/4=-4/4
x=-1
Determine between which two whole numbers lies
\( \sqrt{20} \)
Answer:
20 lies between 16 and 25.
Step-by-step explanation:
Which statement must be true? arc r t ≅ arc u t ∠rqt ≅ ∠rst rq ⊥ qt rs ≅ st
The sides RS and ST are equal because they are the side of the congruent triangle that is RS ≅ ST. Then the correct option is D.
What is a circle?It is a locus of a point drawn equidistant from the center. The distance from the center to the circumference is called the radius of the circle.
In circle Q, ∠RQS ≅ ∠SQT.
In ΔRQS and ΔTQS
∠RQS ≅ ∠SQT (Given)
QS = QS (Common side)
RQ = QT (Radius of the circle)
The ΔRQS and ΔTQS triangles are congruent to each other. That is given as ΔRQS ≅ ΔTQS.
The sides RS and ST are equal because they are the side of the congruent triangle that is RS ≅ ST. Then the correct option is D.
More about the circle link is given below.
https://brainly.com/question/11833983
Answer:
D. rs≅st
Step-by-step explanation:
i did it
A journalist created a table of the political affiliation of voters in Ontario (NDP, Conservative, or Other) and whether they favoured or opposed raising taxes.
Raising Taxes
Favour Oppose
NDP 0.09 0.28
Conservative 0.23 0.12
Other 0.14 0.14
Find the probability that a Conservative voter opposed raising taxes.
A. 0.350
B. 0.222
C. 0.540
D. 0.343
E. 0.120
Rounding to three decimal places, we get 0.343 or approximately 0.222 when expressed as a percentage.
The probability that a Conservative voter opposed raising taxes, we need to look at the second row of the table, which shows the proportions of Conservative voters who favoured or opposed raising taxes.
The proportion who opposed raising taxes is 0.12.
Therefore, the answer is B. 0.222.
To calculate this probability, we simply divide the number of Conservative voters who opposed raising taxes by the total number of Conservative voters:
0.12 / (0.23 + 0.12) = 0.12 / 0.35 = 0.342857
Rounding to three decimal places, we get 0.343 or approximately 0.222 when expressed as a percentage.
This means that there is a 22.2% chance that a Conservative voter opposed raising taxes.
For similar questions on decimal
https://brainly.com/question/28393353
#SPJ11
A triangle has a base of 8.6 feet and a height of 6.2 feet. Find the area of the triangle. Write your answer as a decimal.
Corrective-maintenance task times were observed as given in the following table:
Task time (min)
Frequency
Task Time (min)
Frequency
41
2
37
4
39
3
25
10
47
2
36
5
35
5
31
7
23
13
13
3
27
10
11
2
33
6
15
8
17
12
29
8
19
12
21
14
What is the range of observations?
Using a class interval width of four, determine the number of class intervals. Plot the data and construct curve. What typeof distribution is indicated by the curve?
What is the Met?
What is the geometric mean of the repair times?
What is the standard deviation?
What is the Mmax value? Assume 90% confidence level.
The range of observations is 34. The number of class intervals is 7.
1. Range:
To calculate the range of observations, we subtract the minimum value from the maximum value. In this case, the minimum value is 11 and the maximum value is 47.
Range = 47 - 11 = 34
2. Number of Class Intervals:
To determine the number of class intervals, we divide the range by the class interval width. Given that the class interval width is 4, we divide the range (34) by 4.
Number of class intervals = Range / Class interval width = 34 / 4 = 8.5
Since we cannot have a fractional number of class intervals, we round it up to the nearest whole number.
Number of class intervals = 8
3. Plotting the Data and Constructing the Curve:
To construct a curve, we can create a histogram with the class intervals on the x-axis and the frequency of observations on the y-axis. Each observation falls into its respective class interval, and the frequency represents the number of times that observation occurs. By plotting the histogram, we can analyze the shape of the distribution.
4. Type of Distribution:
Based on the constructed curve, we can analyze the shape to determine the type of distribution. Common types of distributions include normal (bell-shaped), skewed (positively or negatively), and uniform. Without visualizing the curve, it is difficult to determine the type of distribution.
5. Met:
The term "Met" is not clear in the context provided. It might refer to a specific statistical measure or concept that is not mentioned. Please provide more information or clarify the intended meaning of "Met."
6. Geometric Mean of Repair Times:
The geometric mean is a measure of central tendency for a set of positive numbers. It is calculated by taking the nth root of the product of n numbers. However, the repair times are not explicitly provided in the given information, so the geometric mean cannot be determined without the specific repair times.
7. Standard Deviation:
The standard deviation is a measure of the dispersion or spread of a dataset. It provides information about how the data points are distributed around the mean. To calculate the standard deviation, we need the dataset with repair times. Since the repair times are not provided, the standard deviation cannot be determined.
8. Mmax value at 90% Confidence Level:
The term "Mmax" is not clear in the context provided. It might refer to a specific statistical measure or concept that is not mentioned. Please provide more information or clarify the intended meaning of "M max."
To know more about observations, refer here:
https://brainly.com/question/9679245
#SPJ11
Complete Question:
Corrective-maintenance task times were observed as given in the following table:
Task time (min) - Frequency - Task Time (min) - Frequency
41 - 2 - 37 - 4
39 - 3 - 25 - 10
47 - 2 - 36 - 5
35 - 5 - 31 - 7
23 - 13 - 13 3
27 - 10- 11 - 2
33 - 6 - 15 - 8
17 - 12 - 29 - 8
19 - 12 - 21 -14
1. What is the range of observations?
2. Using a class interval width of four, determine the number of class intervals. Plot the data and construct curve. What typeof distribution is indicated by the curve?
3. What is the Met?
4. What is the geometric mean of the repair times?
5. What is the standard deviation?
6. What is the Mmax value? Assume 90% confidence level.
what is 7w when w means 2?
Answer:
14
Step-by-step explanation:
we know that w and 2 are the same here, so substitute w with 2: 7(2)
this means 7 times 2, and that is 14
Answer:
14
Step-by-step explanation:
If w=2
Plug in 7(2)... Multiply then you would have 14.
Determine the growth constant k, then find all solutions of the given differential equation. y' = 2.2y k=0 The solutions to the equation have the form y(t)= (Type an exact answer.)
To determine the growth constant k in the given differential equation y' = 2.2y, we set k = 2.2. The solutions to the equation have the form y(t) = Ce^(kt), where C is a constant and k is the growth constant.
In the given differential equation y' = 2.2y, we have a first-order linear differential equation with a constant coefficient. To find the growth constant, we compare the equation with the standard form of a first-order linear differential equation, which is y' + ky = 0.
By comparing the given equation with the standard form, we see that the growth constant k is 2.2.
The solutions to the differential equation have the form y(t) = Ce^(kt), where C is a constant. In this case, the growth constant k is 2.2, so the solutions are of the form y(t) = Ce^(2.2t).
The constant C represents the initial condition, and it can be determined if additional information about the problem or initial values are provided. Without specific initial conditions, we cannot determine the exact value of C.
Leran more about growth constant here:
https://brainly.com/question/29885718
#SPJ11
Find all 3 solutions: 3 − 42 − 4 + 5 = 0
Answer:
Step-by-step explanation:
If you mean 3x^3 - 42x^2 - 4x + 5 = 0 you can graph it manually or with technology
The roots are 14.09, 0.30 and -0.39 to nearest hundredth.
what method statistically finds the most defects? group of answer choices code reviews system tests unit tests only a combination makes sense.
Code reviews are most likely to find the most defects. So, the correct answer is A).
The statistical method that finds the most defects in software development depends on various factors. Code reviews can identify defects early on in the development process, while system tests can find issues with the overall functionality of the software.
Unit tests can catch defects at a lower level and ensure that individual components of the software are working as expected. However, it is often a combination of these methods that provides the best results.
By utilizing a variety of testing and review techniques, software developers can ensure that defects are caught early and that the software meets the necessary requirements and quality standards. so, the correct answer is Code review and option is A).
To know more about code reviews:
https://brainly.com/question/10585841
#SPJ4
According to the synthetic division below, which of the following statements
are true?
Check all that apply.
3)2 -2 -12
6 12
2 4 0
A. (x+3) is a factor of 2x² - 2x-12.
B. The number -3 is a root of F(x) = 2x² - 2x-12.
c. (2x²-2x-12) + (x-3) = (2x + 4)
D. The number 3 is a root of F(x) = 2x2 - 2x-12.
E. (x-3) is a factor of 2x² - 2x-12.
O (2x2-2x-12) + (x+3) = (2x + 4)
The true statements about the synthetic division are
c. (2x²-2x-12) + (x-3) = (2x + 4)d. The number 3 is a root of F(x) = 2x^2 - 2x-12.e. (x-3) is a factor of 2x² - 2x-12.How to determine the true statements?The synthetic division is given as:
3)2 -2 -12
6 12
2 4 0
In the above representation of the synthetic division, we have:
Quotient = 2x + 4Dividend = 2x^2 - 2x - 12Divisor = x- 3Remainder = 0Because the remainder is 0, then
(2x^2 - 2x - 12) ÷ (x - 3) = (2x + 4) --- option C
Set the divisor to 0
x - 3 = 0
Solve for x
x = 3
This means that 3 is a root of 2x^2 - 2x - 12 --- option (D) and x - 3 is a factor of 2x^2 - 2x - 12 --- option (E)
Hence, the true statements are (C), (D) and (E)
Read more about synthetic divisions at:
https://brainly.com/question/12951962
#SPJ1
1/4(8x-4)=
need help please answer
Answer:
2x-1 is the answer (or if you're trying to multiply it, the answer is -8.)
Step-by-step explanation:
Question 7 of 10
Write a mathematical sentence that expresses the information given below.
Use g as your variable name. If necessary:
type <= to mean
or >= to mean 2.
The number of gallons of gas that were in the tank minus 9 leaves 3 gallons.
Answer here
SUBMIT
random variables x and y are independent exponential random variables with expected values e[x] = 1/λ and e[y] = 1/μ. if μ ≠ λ, what is the pdf of w = x y? if μ = λ, what is fw(w)?
The pdf of W = XY depends on whether μ is equal to λ or not. If μ ≠ λ, the pdf of W is given by fw(w) = ∫[0,∞] λe^(-λ(w/y)) μe^(-μy) dy. If μ = λ, the pdf simplifies to fw(w) = \(λ^2\) ∫\([0,∞] e^(-λw/y) e^(-λy) dy.\)
The pdf of the random variable W = XY, where X and Y are independent exponential random variables with expected values E[X] = 1/λ and E[Y] = 1/μ, depends on whether μ is equal to λ or not.
If μ ≠ λ, the probability density function (pdf) of W is given by:
fw(w) = ∫[0,∞] fX(w/y) * fY(y) dy = ∫[0,∞] λe^(-λ(w/y)) * μe^(-μy) dy
where fX(x) and fY(y) are the pdfs of X and Y, respectively.
If μ = λ, meaning the two exponential random variables have the same rate parameter, the pdf of W simplifies to:
fw(w) = ∫\([0,∞] λe^(-λ(w/y)) λe^(-λy) dy\) = λ^2 ∫\([0,∞] e^(-λw/y) e^(-λy) dy\)
The exact form of the pdf fw(w) depends on the specific values of μ and λ. To obtain the specific expression for fw(w), the integral needs to be evaluated using appropriate limits and algebraic manipulations. The resulting expression will provide the probability density function for the random variable W in each case.
Learn more about pdf here:
https://brainly.com/question/31064509
#SPJ11
Need answer of number 3,4,5
A linear equation - y = 5x -7 is a slant line with intercepts for linear equations. A vertical line is x = 2. A line that runs through the origin is y = 3/4x.
A slant line with intercepts is y = 1/2x + 3. A horizontal line is y = 9. The line x = -1 runs vertically.
A linear equation is what?A direct condition is one that has a level of 1 as its most extreme worth. As a result, there is no variable in a linear equation with an exponent greater than 1. The graph of a linear equation will always be straight.
y = 5x -7 is the first line equation.This line is not horizontal or vertical when the equation is graphed; rather, it is slant.
Additionally, this line does not traverse the origin. As a result, this equation has intercepts and slant lines.
x = 2 is the second line equation.Since there is no y-intercept in this equation, it will be a vertical line that runs parallel to the y-axis.
Additionally, this line does not traverse the origin. As a result, this equation has a line that runs vertically.
y = 3/4x is the third equation for the line.This line is not horizontal or vertical when the equation is graphed; rather, it is slant.
Additionally, this line actually traverses the origin. As a result, the origin of this equation is traversed by slant lines.
y = 1/2x + 3 is the fourth equation for a line.This line is not horizontal or vertical when the equation is graphed; rather, it is slant.
Additionally, this line does not traverse the origin. This equation is therefore a slant line with intercepts.
y = 9 is the fifth line equation.Since there is no x-intercept in this equation, it will be a horizontal line that runs parallel to the x-axis.
Additionally, this line does not traverse the origin. As a result, there is a horizontal line in this equation.
x = -1 is the sixth line equation.Since there is no y-intercept in this equation, it will be a vertical line that runs parallel to the y-axis.
Additionally, this line does not traverse the origin. As a result, this equation has a line that runs vertically.
Learn more about Linear equation :
brainly.com/question/12788590
#SPJ1
What is the weight of a 35. 99-carat diamond in grams and ounces? (1 carat=0. 2 g)
The 35.99-carat diamond weighs approximately 7.198 grams (0.254 ounces).
We can use the conversion factor of 1 carat = 0.2 g to convert carats to grams.
Diamond weight in grams: 35.99 carats x 0.2 g/carat = 7.198 g (rounded to three decimal places)
We can use the conversion factor of 1 ounce = 28.3495 g to convert the weight in grams to ounces.
Diamond weight in ounces: 7.198 g / 28.3495 g/o z = 0.254 o z (rounded to three decimal places)
Carats are now commonly used to measure the weight of gemstones, including diamonds, and are abbreviated as "ct." A 1-carat diamond, for example, weighs 0.2 grams while a 2-carat diamond weighs 0.4 grams.
As a result, the 35.99-carat diamond weighs approximately 7.198 grams (0.254 ounces).
To learn more about weight
https://brainly.com/question/1235091
#SPJ4
Determine the relationship between the two triangles and whether or not they can be proven to be congruent.
Answer:
The two triangles are related by hypotenuse leg
so the triangles are congruent
======================================================
Explanation:
The square markers indicate we have 90 degree angles. This means the two triangles are right triangles.
The tickmarks tell us which sides correspond and are the same length. The double tickmarked sides are the hypotenuses of each triangle. They are the same length because of the matching tickmarks. The same can be said about the legs marked with single tickmarks.
Based on those tickmarks, and the fact we have right triangles, we can use the hypotenuse leg theorem to prove the triangles are congruent.
The hypotenuse leg theorem only works for right triangles.
Since "hypotenuse leg" is used quite often in geometry, it is abbreviated to "HL".
Use the drawing tool(s) to form the correct answers on the provided number line.
Yeast, a key ingredient in bread, thrives within the temperature range of 90°F to 95°FWrite and graph an inequality that represents the temperatures where yeast will NOT thrive.
The inequality of the temperatures where yeast will NOT thrive is T < 90°F or T > 95°F
Writing an inequality of the temperatures where yeast will NOT thrive.from the question, we have the following parameters that can be used in our computation:
Yeast thrives between 90°F to 95°F
For the temperatures where yeast will not thrive, we have the temperatures to be out of the given range
Using the above as a guide, we have the following:
T < 90°F or T > 95°F.
Where
T = Temperature
Hence, the inequality is T < 90°F or T > 95°F.
Read more about inequality at
https://brainly.com/question/32124899
#SPJ1
A. It has point symmetry.
B. It has rotational symmetry with an angle of rotation of 120°.
C. It has reflectional symmetry with five lines of symmetry.
D. It has no rotational symmetry.
HELP WILL MARK BRAINLIEST.
Answer: C. It has reflectional symmetry with five lines of symmetry.
The five lines of symmetry are shown in the diagram below. Each line splits a flower petal in half. Each line also splits the entire flower in half. In other words, reflecting one half of a flower over any given line of symmetry, generates the other half of the flower.
The correct answer is C. The given figure has reflectional symmetry with five lines of symmetry.
Symmetry refers to the property of an object remaining unchanged when certain transformations are applied to it.
A. Point symmetry, also known as rotational symmetry, means that the object looks the same when rotated by a certain angle around a central point. However, a given figure does not have point symmetry since it does not look the same when rotated by any angle around a central point.
B. The statement that the flower has rotational symmetry with an angle of rotation of 120° is incorrect because, as mentioned above, it does not possess rotational symmetry.
C. The flower does have reflectional symmetry with five lines of symmetry. This means that the flower can be divided into five equal parts using five lines of reflectional symmetry, such that each part is a mirror image of the other.
D. The statement that the flower has no rotational symmetry is correct, as mentioned in A and B.
Therefore, the correct answer is C. It has reflectional symmetry with five lines of symmetry.
Learn more about reflectional symmetry here
https://brainly.com/question/27847257
#SPJ2
there are four boys to every seven girls in an introductory geology course. if there are 374 students enrolled in the course, how many are boys?
There are 172 boys in the introductory geology course.
The ratio of boys to girls is 4:5. We can know that the number of boys in the class is four multiplied by the common value that the ratio is based on.
We can call this usual value x and say that the number of boys in the class is 4x. Applying the same logic to the girls, we can say that there are 5x girls in the class. Hence, a total of 9x children. We divide the total value by 9 to get x, which equals 43.
We can then calculate the number of boys by calculating 4x, which equals 172.
To know more about Geology Course:
https://brainly.com/question/30355289
#SPJ4
7. Given the following diagram, if AABC is scaled with a scale factor of 1 about vertex A. What would the coordinates of C' be?
Please help!!
Answer:
5, -1
with a scale factor of 1, nothing changes
PLS HELP IMMEDIATELY PLEASE
Answer:
what we have to do here
please tell us .
then i will help you
you can use this formula
then it might help you
Which of the following is true about the area of a triangle with side lengths that measure 6 units, 8 units, and 10 units?
A. Since the lengths form a Pythagorean triple, the triangle is a right triangle. Therefore, the area is (6)(8) = 48 square units.
B. Since the lengths form a Pythagorean triple, the triangle is a right triangle. Therefore, the area is (0.5)(6)(8) = 24 square units.
C. Since the lengths form a Pythagorean triple, the triangle is a right triangle. Therefore, the area is (0.5)(6)(10) = 30 square units.
D. There is not enough information to find the area of the triangle.
Y
Answer:
i think its b
Step-by-step explanation:
3/5 of a number is 162. Work out the number. How do I do this AQA question?
Answer:
The number is 270
Step-by-step explanation:
Let the number be 'x'
3/5 of x = 162
\(\frac{3}{5}*x = 162\\\\x=162*\frac{5}{3}\\\\x=54 * 5\\\\x = 270\)
Answer:
\( \boxed{ \bold{ \huge{ \boxed{ \sf{270}}}}}\)
Step-by-step explanation:
Let the number be 'x'
\( \sf{ \frac{3}{5 } \: \: of \: x \: = 162}\)
⇒\( \sf{ \frac{3x}{5} = 162}\)
Apply cross product property
⇒\( \sf{3x = 162 \times 5}\)
Multiply the numbers
⇒\( \sf{3x = 810}\)
Divide both sides of the equation by 3
⇒\( \sf{ \frac{3x}{3} = \frac{810}{3} }\)
Calculate
⇒\( \sf{x = 270}\)
Hope I helped!
Best regards!!
mike has some candies and gave 15 of them to his friend, Late his mom bought him twice the amount of candies he had at the beginning how many candies did he have in the beginning if he has 60
Answer:
30
Step-by-step explanation:
gave 15 to his friend 30-15=15 his mom bought mom 60 candies so 30
Ms. Kenny finds that she has 7/8 of a pound of clay for a project. the project requires 1/6 of a pound. How many projects can ms Kenny complete without running out of clay?
Answer:
5.25 as decimal
5 1/4 as fraction simplified
Step-by-step explanation:
Flip the reciprocal on the 1/6 and multiply it by the 7/8.
Have a great day!
11. Gael wants to build a bike ramp
such that mzB is less than 50°.
His plan is shown below. Will it
work? Explain.
No, the plan will not work because tan B = 8/5; B ≈ 58°
How to use trigonometric ratios?There are three primary trigonometric ratios for a right angle triangle and they are:
sin x = opposite/hypotenuse
cos x = adjacent/hypotenuse
tan x = opposite/adjacent
To get angle B, we will make use of trigonometric ratios to get:
tan B = 8/5
tan B = 1.6
B = tan⁻¹1.6
B = 58°
From the ramp, we can see that the angle is greater than what Gael wants to build and as such we can say it will not work.
Read more about trigonometric ratios at: https://brainly.com/question/13276558
#SPJ1