Answer:
11
Step-by-step explanation:
You put the 3 in the place of the X
which means X^2 would be 3^2
That would be 9
You would then add 9 + 2
11 would be your answer
pls someone help me
Answer:
x=16
y=10
Step-by-step explanation:
8x-14=5x+34
3x=48
x=16
8(16)-14=114
114+5y+16=180
5y+16=66
5y=50
y=10
Answer:
x=16 y=10
Step-by-step explanation:
did this on my quiz. i got it right
Geometry problem: Find the missing side length for x.
Answer:
x=18
Step-by-step explanation:
y²+y²=(9√(2))²
2y²=81*2
y²=162/2
y²=81
y=9
hypotenuse: 2y=x 2*9=18
x=18
If a 30-Foot tree cast an 18-foot shadow, find the length of the shawdow cast by a 27- foot tree
Answer:
your answer is 14.4 ft
Step-by-step explanation:
have a nice day
Choose the system of equations which matches the following graph.
A. 3x-6y=12
9x-18y=36
B. 3x+6y=12
9x+18y=36
The system of equations that matches the given graph is:
A. 3x - 6y = 12
9x - 18y = 36
To determine which system of equations matches a given graph, we need to analyze the slope and intercepts of the lines in the graph.
Looking at the options provided:
A. 3x - 6y = 12
9x - 18y = 36
B. 3x + 6y = 12
9x + 18y = 36
Let's analyze the equations in each option:
For option A:
The first equation, 3x - 6y = 12, can be rearranged to slope-intercept form: y = (1/2)x - 2.
The second equation, 9x - 18y = 36, can be simplified to 3x - 6y = 12, which is the same as the first equation.
In option A, both equations represent the same line, as they are equivalent. Therefore, option A does not match the given graph.
For option B:
The first equation, 3x + 6y = 12, can be rearranged to slope-intercept form: y = (-1/2)x + 2.
The second equation, 9x + 18y = 36, can be simplified to 3x + 6y = 12, which is the same as the first equation.
In option B, both equations also represent the same line, as they are equivalent. Therefore, option B does not match the given graph.
for such more question on system of equations
https://brainly.com/question/4262258
#SPJ8
Question 14 > Suppose f(x) = 3x - 1. Compute each of the following. f(3 + 1) = f(3) + f(1) = f(3-1) = f(3) = f(1) = f(3-1) = f(3) f(1) =
When computing the given expressions for f(x) = 3x - 1, we find that f(3 + 1) = 15, f(3) + f(1) = 8, f(3-1) = 5, f(3) = 8, f(1) = 2, and f(3-1) = 5.
To find f(3 + 1), we substitute the value of 3 + 1 into the expression for f(x): f(3 + 1) = 3(3 + 1) - 1 = 12 - 1 = 11.
Next, to calculate f(3) + f(1), we substitute the values of 3 and 1 into the expression for f(x) separately and add them together: f(3) + f(1) = (3 * 3 - 1) + (3 * 1 - 1) = 8.
For f(3-1), we substitute the value of 3 - 1 into the expression for f(x): f(3-1) = 3(3-1) - 1 = 5.
Since f(3) and f(1) are both defined as 3x - 1, they have the same value: f(3) = f(1) = 8.
Finally, to compute f(3) f(1), we multiply the values of f(3) and f(1) together: f(3) f(1) = (3 * 3 - 1)(3 * 1 - 1) = 5.
Learn more about computing a given expression:
https://brainly.com/question/15889060
#SPJ11
if you select three sticks, each of random length (between 0 and 1), what is the probability of being able to form a triangle with them?
The probability of being able to form a triangle with three sticks of random length is 1/2 or 50%.
What is probability?
Probability is a measure of the likelihood or chance of an event occurring. It is a number between 0 and 1, with 0 representing an impossible event and 1 representing a certain event. The probability of an event is calculated by dividing the number of ways the event can occur by the total number of possible outcomes.
The probability of being able to form a triangle with three sticks of random length can be found using geometric probability.
First, we can assume that the length of the first stick is x, where 0 ≤ x ≤ 1. The second stick can be any length y such that 0 ≤ y ≤ 1. The third stick can be any length z such that 0 ≤ z ≤ 1.
For the three sticks to form a triangle, they must satisfy the triangle inequality, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. Therefore, we have three cases to consider:
x + y > z
x + z > y
y + z > x
We can graph these three inequalities on a coordinate plane, where x and y are the lengths of two sides of the triangle, and the third side is represented by the area below the line.
The area of the triangle formed by the inequalities is 1/2, and the total area of the square representing the possible lengths of the sticks is 1.
Therefore, the probability of the three sticks forming a triangle is the ratio of the area of the triangle to the area of the square:
P(triangle) = area of triangle / area of square = (1/2) / 1 = 1/2
Hence, the probability of being able to form a triangle with three sticks of random length is 1/2 or 50%.
To know more about probability visit :
https://brainly.com/question/13604758
#SPJ4
Help me on this question please
The measure of angle DAB in the given quadrilateral can be calculated as: 109°.
How to Find the Measure of an Angle in a Quadrilateral?To find the measure of an angle in a quadrilateral, you need to use the fact that the sum of all angles in a quadrilateral is always equal to 360 degrees.
Using the above fact stated, we can add up the three known angles in the given quadrilateral and then subtract it from 360 degrees to find the measure of angle DAB.
Thus, we have:
m<DAB = 360 - (90 + 97 + 64)
m<DAB = 360 - 251
m<DAB = 109°
Learn more about Quadrilateral on:
https://brainly.com/question/30291770
#SPJ1
3/8 + 1/8 - 1/3 + 1/4 =
Answer:
0.41666666, to round up, the answer is 0.42
Step-by-step explanation:
\( \frac{3}{8} + \frac{1}{8} - \frac{1}{3} + \frac{1}{4} = \frac{4}{8} - \frac{1}{3} = \frac{4}{24} + \frac{1}{4} = \frac{10}{24} = \frac{5}{12} \)
I need help on number 10 please the reason why thEre is a number is because I got the answer from going over it I just need to know how to do it
Question:
Solution:
Consider the following equation:
\(P\text{ = 2(l+w)}\)if l = 14 ft and w= 9ft and if we replace these values into the previous equation, we get:
\(P\text{ = 2(14+9) = 2(23) = 46}\)we can conclude that the correct answer is:
\(P\text{ = 46 ft}\)
A group of 12 students goes on a school field trip, 6 are in third grade. which fraction is equivalent to 6 12
The fraction which is equivalent to 6/12 is 1/2
What does a fraction mean?
In the first place, fraction is a numerical quantity or relationship where one number is expressed in terms of another.
In order to determine the equivalence of 6/12 in fraction , we need reduce 6/12 to the lowest term, since 6 is common to 6 and 12 and that 6 divided by gives 1 and 12/6 gives 2, which means that we are left 1/2
The correct fraction which is equivalent to 6/12 is 1/2
Find out more about fraction on:https://brainly.com/question/5243429
#SPJ1
Full question:
A group of 12 students goes on a school field trip, 6 are in third grade. which fraction is equivalent to 6/12?
(A) 1/3
(B)1/4
(C) 1/6
(D) 1/2
42. Find the equation of the sphere with center C(−2,3,7) that is tangent to the plane 2x+3y−6z=5.
To find the equation of the sphere tangent to the plane 2x + 3y - 6z = 5 with center C(-2, 3, 7), we need to find the radius of the sphere. The equation of the sphere is (x + 2)^2 + (y - 3)^2 + (z - 7)^2 = 36.
The distance from the center of the sphere to the plane is equal to the radius. We can use the formula for the distance between a point (x, y, z) and a plane Ax + By + Cz + D = 0:
Distance = |Ax + By + Cz + D| / sqrt(A^2 + B^2 + C^2)
In this case, the plane equation is 2x + 3y - 6z - 5 = 0. Plugging in the coordinates of the center C(-2, 3, 7) into the formula, we have:
Distance = |2(-2) + 3(3) - 6(7) - 5| / sqrt(2^2 + 3^2 + (-6)^2)
= |-4 + 9 - 42 - 5| / sqrt(4 + 9 + 36)
= |-42| / sqrt(49)
= 42 / 7
= 6
So, the radius of the sphere is 6.
The equation of a sphere with center C(-2, 3, 7) and radius 6 is:
(x + 2)^2 + (y - 3)^2 + (z - 7)^2 = 6^2
Simplifying further, we have:
(x + 2)^2 + (y - 3)^2 + (z - 7)^2 = 36
Therefore, the equation of the sphere is (x + 2)^2 + (y - 3)^2 + (z - 7)^2 = 36.
Learn more about radius here
https://brainly.com/question/24375372
#SPJ11
the question is on the image
Answer:
€3,551.05
Step-by-step explanation:
31*29=899
899*3.65=€3,551.05
the school will get an estimate of €3,551.05
a rectangular poster is to contain 200 square inches of print. the margins at the top and bottom of the poster are to be 2 inches, and the margins on the left and right are to be 1 inch. what should the dimensions of the poster be so that the least amount of poster is used?
dimensions of the poster with margin are L = 12 in and h = 24 in
What is the area of a rectangular poster?The shape/polygon of a rectangle is two dimensional, having four sides, four vertices, and four right angles. The rectangle's two opposing sides are equal and parallel to one another. The space a rectangle occupies is known as its area. The area of a rectangle can also be defined as the region inside its border.
We utilise the unit squares to calculate a rectangle's area. Rectangle ABCD should be divided into unit squares. The total number of unit squares that make up a rectangle ABCD is its area.
Rectangle area equals length times width.
SolutionLet call length of printed area of the poster be " x " and height of printed area of the poster be " y ".
Area of the poster = length and height
200 = x*y
y = 200/x
We also know that dimensions of the poster with margin is:
L = x + 2 in and H = y + 4 in
Therefore area of the poster is:
A(p) = ( x + 2 ) * ( y + 4 )
And area as function of x is:
A(x) = ( x + 2 ) * ( 200/x + 4 )
A(x) = 200 + 4*x + 400 /x + 8
Taking derivatives on both sides of the equation we have:
A´(x) = 4 - 400/x²
By taking A´(x) = 0
4 - 400/x² = 0 ⇒ 4*x² - 400 = 0
x² = 400 / 4
x² = 100
x = 10 in
and y = 200/x ⇒ y = 20
The second derivative A´´(x) = 400/x4 which is > 0
there is a minimum for the function at the point x = 10
As x and y are dimensions of the printing area of the poster, dimensions of the poster with margin are
L = x + 2 = 10 + 2 = 12 in and
h = y + 4 = 20 + 4 = 24 in
to learn more about area of rectangle visit:
brainly.com/question/28700994
#SPJ4
if there is an 84% chance of an event happening in an hour, what is the probability that it happens in half an hour?
The probability of an event happening in half an hour cannot be determined simply by multiplying or dividing the probability of the event happening in an hour by a factor of 2.
Probabilities are not linear in that way. The probability of an event happening in half an hour would depend on the specific details of the event and the underlying probability distribution.
The probability of an event happening in half an hour, given an 84% chance of it happening in an hour, cannot be determined without additional information. The probability of an event occurring in half an hour would depend on the specific circumstances of the event and how the 84% probability was determined.
To learn more about probability, visit here
https://brainly.com/question/30034780
#SPJ4
if there is an 84% chance of an event happening in an hour, then the probability that it happens in half an hour will be 84% = 0.84.
One cannot easily calculate the likelihood of an event occurring in half an hour by multiplying or dividing the chance of the event occurring in an hour by a factor of 2.
In that sense, probabilities are not linear. The likelihood of an event occurring in half an hour is determined by the event's specifics and the underlying probability distribution.
Without further information, the likelihood of an event occurring in half an hour given an 84% chance of occurring in an hour cannot be computed. The likelihood of an event occurring in half an hour is influenced on the event's unique circumstances and how the 84% probability was calculated.
For more questions on probability distribution
https://brainly.com/question/23286309
#$SPJ4
Two miles away from home, she had to walk the remaining four miles. She had to walk all the way back home. How many more miles did she walk than she rode?
Answer:
Distance rode = 6 miles
Step-by-step explanation:
distance from home = 2 miles
remaining distance = 4 miles
The distance rode = 4 + 2 = 6 miles
Write the equation of the line that is PARALLEL to y = -4x + 5 and passes through the point (-2,-1)
Answer: Two parallel lines have the same slope. Therefore, we can use the slope of the given line y = -4x + 5 to find the slope of the line that is parallel to it.
The slope of y = -4x + 5 is -4. Therefore, the slope of any line parallel to it will also be -4.
Now we have the slope of the line and a point that it passes through. We can use point-slope form to write the equation of the line:
y - y1 = m(x - x1)
where m is the slope and (x1, y1) is the point on the line.
Plugging in the values we know, we get:
y - (-1) = -4(x - (-2))
y + 1 = -4(x + 2)
y + 1 = -4x - 8
y = -4x - 9
Therefore, the equation of the line that is parallel to y = -4x + 5 and passes through the point (-2,-1) is y = -4x - 9.
Step-by-step explanation:
O is between M and P. If OM = 11 and PO = 14, find the length of MP
According to the given information, we can draw the following
As you can observe in the image, MP is formed by OM plus PO by the sum of segments theorem, so using the given information, we have
\(\begin{gathered} MP=OM+PO \\ MP=11+14=25 \end{gathered}\)Therefore, the length of MP is 25 units.Task 4:
A Jesus Christ lizard is jumping across the water in search of
food. The equation h = -12t2 + 6t models the lizard's height
in feet above the water t seconds after he jumps.
A: How long after jumping is he back on the water?
0,3
22
B: How high is each jump?
-12(0.251
075 teet
C: How long does it take to get to
his highest point? 0.25
A: To determine when the lizard is back on the water, we need to find the time when the height (h) is equal to 0. So we set the equation -12t^2 + 6t = 0 and solve for t.
-12t^2 + 6t = 0
Factor out common terms:
-6t(2t - 1) = 0
Set each factor equal to 0:
-6t = 0 or 2t - 1 = 0
Solving each equation:
-6t = 0 --> t = 0
2t - 1 = 0 --> 2t = 1 --> t = 1/2
So the lizard is back on the water at t = 0 seconds and t = 1/2 seconds.
B: The height of each jump can be determined by substituting the time (t) values into the equation h = -12t^2 + 6t.
For t = 0 seconds:
h = -12(0)^2 + 6(0)
h = 0
For t = 1/2 seconds:
h = -12(1/2)^2 + 6(1/2)
h = -12(1/4) + 6/2
h = -3 + 3
h = 0
So each jump has a height of 0 feet.
C: To find the time it takes to reach the highest point, we need to find the vertex of the parabolic equation -12t^2 + 6t. The time at the vertex represents the highest point.
The formula for the x-coordinate of the vertex of a quadratic equation in the form ax^2 + bx + c is given by -b/(2a). In this case, a = -12 and b = 6.
t = -6/(2(-12))
t = -6/(-24)
t = 1/4
So it takes 1/4 seconds to reach the highest point.
Therefore, the answers are:
A: The lizard is back on the water at t = 0 seconds and t = 1/2 seconds.
B: Each jump has a height of 0 feet.
C: It takes 1/4 seconds to reach the highest point.
1 point 5. Mariah drew a model to match the equation below. 2/1/6 =12 What model best represents her equation?
Answer:
c
Step-by-step explanation:
which is not a solution to the differential equation y" + 4y = 0? A y = 10 B y=4e-2X C. y=3 sin(2x) D. y-2 cos(2x) + 4
D. y-2 cos(2x) + 4 is not a solution to the differential equation y" + 4y = 0.
The homogeneous Linear DifferentialThe differential equation y" + 4y = 0 is a second-order, homogeneous linear differential equation with constant coefficients. The general solution to this type of differential equation is of the form y = e^(rt) where r is a root of the characteristic equation r² + 4 = 0. The roots of this equation are r = +/- √(4) = +/- 2i, which are both imaginary. Therefore, the general solution to the differential equation is y = c1cos(2x) + c2*sin(2x), where c1 and c2 are arbitrary constants.
Option D. y - 2 cos(2x) + 4 is not a solution to this differential equation because it doesn't have the same form as the general solution. It is a combination of a constant term, cosine and sine function but the general solution only contains sine and cosine function.
Learn more about homogeneous linear differential here:
https://brainly.com/question/22212112
#SPJ4
a worded math problem that = 5
Answer:
Seven take away two is equals to five
Step-by-step explanation:
Because,
Seven take away two is equals to five
is the same to
7 - 2 = 5
sarah is playing a game in which she rolls a number cube 20 times the results are recorded in the chart below. what is the experimental probability of rolling a 1 or a 2? answers 0.3, 0.45, 0.65, 1.25.
The experimental probability of rolling a 1 or a 2 is 0.2.
Hence, Option A is correct.
We know that,
The experimental probability of an event is defined as the number of times the event occurred divided by the total number of trials.
In this case,
The event is rolling a 1 or a 3,
Which occurred ⇒ 3 + 1
= 4 times.
Given that there are total number of trials = 20.
Therefore,
The experimental probability of rolling a 1 or a 3 = 4/20,
= 1/5
= 0.2
Hence, the required probability is 0.2.
Learn more about the probability visit:
https://brainly.com/question/13604758
#SPJ1
The complete question is:
Sarah is playing a game in which she rolls a number cube 20 times. The results are recorded in the chart below. What is the experimental probability of rolling a 1 or a 3?
Number on cube:1,2,3,4,5,6
Number of times event occurs:3,6,1,5,3,2
A.0.2
B.0.3
C.0.6
D.0.83
what is equivalent to 6(a − 2) + 8a ⋅2+3(a + 1)
True or false a statiscal package is likely to be used with quantitative research but not with qualitative reearch
A statistical package is likely to be used with quantitative research but not with qualitative research - True.
The collection and analysis of numerical data, such as survey responses or experimental measurements, is common in quantitative research, and statistical analysis is frequently used to summarise and interpret this data. In quantitative research, statistical software such as SPSS, R, or Stata are widely used to do data analysis and statistical tests.
In contrast, qualitative research often entails gathering and interpreting non-numerical data, such as interview transcripts or observational notes. Although statistical analysis may not be suited for this type of data, several software packages, such as NVivo, MAXQDA, or ATLAS.ti, can be used to manage and analyse qualitative data.
For such more question on statistical:
https://brainly.com/question/30636235
#SPJ4
Completely factor the polynomial. 4x2 20x 25 (2 x - 5) 2 (2 x - 10)(2 x 15) (2 x 6)(2 x 4) (2 x 5) 2
The factor of the polynomial is option (D) (2x+5)^2 is the correct answer.
In this question,
Factorization is the breaking or decomposition of an entity (i.e.,) a number, a matrix, or a polynomial into a product of another entity, or factors, which when multiplied together give the original number. Factorize an expression involves take out the greatest common factor (GCF) of all the terms.
The polynomial is \(4x^{2} +20x+25\)
The above polynomial can be factored as
⇒ \(4x^{2} +20x+25=0\)
⇒ \((2x)^{2}+2(2x)(5)+5^{2}\)
⇒ \((2x+5)^{2}\)
Hence we can conclude that the factor of the polynomial is option (D)(2x+5)^2 is the correct answer.
Learn more about factorization here
https://brainly.com/question/9863444
#SPJ4
The branch of statistics that uses sample statistics to estimate a population parameter or test a hypothesis about such a parameter is best referred to as?
The branch of statistics that uses sample statistics to estimate a population parameter or test a hypothesis about such a parameter is best referred to as inferential statistics.
What is inferential statistics?Statistical inference is the method of using data analysis to infer characteristics of a probability distribution. Inferential statistical analysis deduces population properties, for example, by testing hypotheses and generating estimates. The observed data set is assumed to be a sample from a larger population. Inferential statistics is the branch of statistics that uses sample statistics to estimate a population parameter or test a hypothesis about such a parameter.Descriptive statistics is only concerned with the properties of the observed data and does not assume that the data come from a larger population. Inferential statistics differ from descriptive statistics.Therefore, the branch of statistics that uses sample statistics to estimate a population parameter or test a hypothesis about such a parameter is best referred to as inferential statistics.
Know more about inferential statistics here:
https://brainly.com/question/27169962
#SPJ4
How do I solve both equations ?
Answer:
a) 56.25 mph
b) $1.59/lb
Step-by-step explanation:
The units of the "unit rate" tell you the math operation you need to perform.
a)Miles per hour (mi/h) is found by dividing miles by hours.
(450 mi)/(8 h) = (450/8) mi/h = 56.25 mi/h
b)
Dollars per pound ($/pound) is found by dividing dollars by pounds.
($7.95)/(5 pounds) = (7.95/5) $/pound = 1.59 $/pound
__
Additional comment
In the context of unit rates, "per" means "divided by."
What makes a rate a "unit rate" is the "1 unit" in the denominator. For miles per hour, the denominator is 1 hour. For dollars per pound, the denominator is 1 pound.
what is 8x > -136??????
Hope this helps
x > -17
which racing organization saw its television ratings increase 28% over 2021 to a season average of 1.2 million viewers?
Answer:
Formula 1 Racing
Step-by-step explanation:
The distance that an object falls from rest, when air resistance is negligible, varies directly as the square of the time that it falls (before it hits the ground). A stone dropped from rest travels 241 feet in the first 5 seconds. How far will it have fallen at the end of 6 seconds? Round your answer to the nearest integer if necessary.
The stone will have fallen approximately 346 feet at the end of 6 seconds.the equation that represents the relationship between the distance and time,
According to the given information, the distance that an object falls from rest varies directly as the square of the time. Let's represent the distance as "d" and the time as "t." Therefore, we can write the equation as:
d = kt^2
where "k" is the constant of variation.
To find the value of "k," we can use the given information. The stone travels 241 feet in the first 5 seconds, so we can substitute these values into the equation:
241 = k * 5^2
241 = 25k
Solving for "k," we divide both sides by 25:
k = 241 / 25
k = 9.64
Now that we have the value of "k," we can use it to determine the distance at the end of 6 seconds. Substituting "t = 6" into the equation, we get:
d = 9.64 * 6^2
d ≈ 346
Therefore, the stone will have fallen approximately 346 feet at the end of 6 seconds.
The stone dropped from rest travels 241 feet in the first 5 seconds. By using the equation that represents the relationship between the distance and time, we found that the stone will have fallen approximately 346 feet at the end of 6 seconds, assuming negligible air resistance.
To know more about distance follow the link:
https://brainly.com/question/30395212
#SPJ11