Answer:
The answer to this problem is A
Step-by-step explanation:
it is better to over estimiate so that he dosent need more money when he goes to buy the gold balls.
Im available on Mondays to Thursdays during 8:00 A.M to 4:00 P.M
--Priya
(⚠️⚠️HELP!⚠️⚠️)Mary bought 18 books. Mary bought 6 times as many books as Carlos. Let b be the number of books that Carlos bought. Write an equation that relates the number of books that they bought. Use 6, 18, and b.
Answer:
18=6b, b=3
Because Mary has 6 times as much as Carlos does, we put the x with 6. 18 is the number that 6x equals. 6*3=18
Answer: the answer to your question is 3
Step-by-step explanation:
4. Write an equation of the ellipse with foci at (±1, 0) and co-vertices at (0, ±2)
Answer:
Step-by-step explanation:
The foci:
F=(1,0)
F'=(-1,0)
The co-vertices:
V=(0,2
V'=(-2,0)
\(\dfrac{x^2}{a^2} +\dfrac{y^2}{b^2} =1\\\\with\ \\b=2\\and \\2*a=2*|FV|=2*\sqrt{5} \, a=\sqrt{5}\\\\\dfrac{x^2}{5} +\dfrac{y^2}{4} =1\\\)
Assume that you plan to use a significance level of α = 0.05 to test the claim that p1 = p2. Use the given sample sizes and numbers of successes to find the P-value for the hypothesis test.
n1 = 50 x1 = 8 n2 = 50 x2 = 7
The P-value for the hypothesis test is approx. 0.7064.
To find the P-value for the hypothesis test, we need to perform a two-sample proportion test. The formula to calculate the test statistic for this test is given by:
\(\[ z = \frac{{(\hat{p}_1 - \hat{p}_2) - 0}}{{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{{n_1}} + \frac{1}{{n_2}}\right)}}} \]\)
where \(\hat{p}_1\) and \(\hat{p}_2\) are the sample proportions, \(\hat{p}\) is the combined sample proportion, \(n_1\) and \(n_2\) are the sample sizes, and 0 is the hypothesized difference in proportions.
In this case, we have \(n_1 = 50\), \(x_1 = 8\) (number of successes in sample 1), \(n_2 = 50\), and \(x_2 = 7\) (number of successes in sample 2).
First, we calculate the sample proportions:
\(\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{8}{50} = 0.16 \]\)
\(\[ \hat{p}_2 = \frac{x_2}{n_2} = \frac{7}{50} = 0.14 \]\)
Next, we calculate the combined sample proportion:
\(\[ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{8 + 7}{50 + 50} = 0.15 \]\)
Then, we calculate the standard error:
\(\[ SE = \sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{{n_1}} + \frac{1}{{n_2}}\right)} = \sqrt{0.15(1 - 0.15)\left(\frac{1}{50} + \frac{1}{50}\right)} \approx 0.0529 \]\)
Finally, we calculate the test statistic:
\(\[ z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{SE} = \frac{(0.16 - 0.14) - 0}{0.0529} \approx 0.3772 \]\)
To find the P-value, we look up the test statistic in the standard normal distribution table. In this case, the P-value is the probability of observing a test statistic greater than 0.3772 or less than -0.3772.
Consulting the table, we find that the P-value is approximately 0.7064. Therefore, the P-value for the hypothesis test is approximately 0.7064.
To know more about P-value refer here:
https://brainly.com/question/30461126
#SPJ11
Suppose the mean income of firms in the industry for a year is 8585 million dollars with a standard deviation of 99 million dollars. If incomes for the industry are distributed normally, what is the probability that a randomly selected firm will earn between 9191 and 9797 million dollars
The probability that a randomly selected firm will earn between 9191 and 9797 million dollars is, 0.1879
We have to given that,
The mean income of firms in the industry for a year is 8585 million dollars with a standard deviation of 99 million dollars.
Hence, We need to standardize the values of 9191 and 9797 to a standard normal distribution with a mean of 0 and a standard deviation of 1. We can do this using the z-score formula:
z = (x - μ) / σ
where x is the value we want to standardize, μ is the mean of the distribution, and σ is the standard deviation of the distribution.
For x = 9191:
z = (9191 - 8585) / 99 = 0.61
For x = 9797:
z = (9797 - 8585) / 99 = 1.22
Now, we need to find the probability that a randomly selected firm will have an income between 9191 and 9797 million dollars.
This is equivalent to finding the area under the standard normal distribution curve between z = 0.61 and z = 1.22.
We can use a standard normal distribution table or calculator to find this probability.
For example, using a standard normal distribution table, we can find that:
P(0.61 < Z < 1.22) = 0.1879
Therefore, the probability that a randomly selected firm will earn between 9191 and 9797 million dollars is, 0.1879 or 18.79%.
Learn more about the probability visit:
https://brainly.com/question/13604758
#SPJ4
In 2005 a town with a population of 10,000 finds that its population is declining by a rate of 0.3% per year. Find the following
of the original population. He answered that it would never reach half, what is the incorrect assumptions Johnny made? (answer with a Johnny was asked how long it will take the population to reach complete sentence)
Johnny's assumption is that, none of the residents of the town will live up to 231 years.
The parameters are given as:
\(\mathbf{P_o = 10000}\)--- the population in 2005
\(\mathbf{r = 0.3\%}\) -- the rate at which the population declines
To model a population, we make use of the following exponential function
\(\mathbf{P = P_o \times(1 -r)^t}\)
Where P is the current population in t years.
So, we have:
\(\mathbf{P = 10000 \times(1 -0.3\%)^t}\)
When the population reaches half of the initial population, then P = 5000.
So, we have:
\(\mathbf{5000 = 10000 \times(1 -0.3\%)^t}\)
Divide both sides by 10000
\(\mathbf{0.5 = (1 -0.3\%)^t}\)
\(\mathbf{0.5 = (0.997)^t}\)
Take logarithm of both sides
\(\mathbf{log(0.5) = log(0.997)^t}\)
Rewrite the equation as
\(\mathbf{log(0.5) = tlog(0.997)}\)
Make t the subject
\(\mathbf{t = \frac{log(0.5)}{log(0.997)}}\)
\(\mathbf{t = 231}\)
This means that the population will halve its initial population in 231 years.
Johnny's assumption is that, none of the residents of the town will live up to 231 years.
Read more about population functions at:
https://brainly.com/question/25704773
Please I need help! I need to find the Cosine of A
Answer:
cos A = 12/13 = 0.9231
(angle A = 22.62°)
Step-by-step explanation:
cos A = 12/13 = 0.9231
ANSWER=
cos A = 12/13 = 0.9231
(angle A = 22.62°)
EXPLANTION=
cos A = 12/13 = 0.9231
Can someone help me with this question it’s geometry
Measure of angle WVX is 7/9 π
Given,
circle with center V
Radius of circle = 2
Arc length = 14/9 π
Now to measure the central angle of the arc,
Arc length = 2πr × α/360°
α = central angle of arc = ∠WVX
Now,
Substitute the values in the formula,
14/9 π = 2π × 2 ×α/360
α = 7/9 π
Hence the value of ∠WVX = 7/9 π .
Know more about arc in circle,
https://brainly.com/question/31705128
#SPJ1
SEE PICTURE FOR QUESTION
In right triangle ABC, m angle C equals 90 degree. If sin A equals 24 over 25, which function also equals 24 over 25?
Answer:
cos B
Step-by-step explanation:
Let us take a look at angle B
The side adjacent angle B is 24 while the hypotenuse (the side facing the right angle) is 25
The relationship between the adjacent and the hypotenuse can be mapped our using the cosine
So, the cosine is the ratio between the adjacent and the hypotenuse
Hence, cos B = 24/25
Which number is an irrational number?
1. 50
2. 36
3. 100
4. 81
Answer:
36
Step-by-step explanation:
Answer:
50 and that line thingy
Step-by-step explanation:
uh
1 1/3 divided by 40 by using the algorithm method
Problem
1 1/3 divided by 40 by using the algorithm method
Solution
For this case we can do this first:
\(1\frac{1}{3}=\frac{1\cdot3+1}{3}=\frac{4}{3}\)And then we can divide this number by 40 like this:
\(\frac{4}{3}\cdot\frac{1}{40}=\frac{4}{120}=\frac{2}{60}=\frac{1}{30}\)Factor the Expression Completely: -14a+56b+84c-28a+42
Answer:
14(−3a+4b+6c+3) is the answer
A stand is a frustum shape, formed by removing a small square-based pyramid from the top of a large square-based pyramid.
the wood has a density of 85 g/cm3.
calculate the mass of the stand in g.
give your answer to 1 dp.
The mass of the stand will be 21165 g.It is found as the product of the density and the mass of the stand.
What is mass?Mass is a numerical measure of inertia, which is a basic feature of all matter. It is, in effect, a body of matter's resistance to a change in speed or position caused by the application of a force.
The frustum shape volume is;
\(\rm V_1= \frac{1}{3} \pi r^2 h \\\\ V_1= \frac{1}{3} \times 10 \times 10 \times 90 \\\\ V_1 = 300 \ cm^3\)
From the similarity;
\(\rm \frac{5}{9} =\frac{x}{10} \\\\ x= \frac{50}{9}\)
The volume of the second section;
\(\rm V_2 = \frac{1}{3} \times \pi \times x^2 \times h \\\\ V_2 = \frac{1}{3} \times \frac{50}{9} \times \frac{50}{9} \times 5 \\\\\ V_2 = 51 \ cm^3\)
The volume of the stand is ;
\(\rm V_3= V_1 - V_2 \\\\ V_3 = 300 \ cm^3 - 51 \ cm^3 \\\\ V_3=249 \ cm^3\)
Mass of stand = volume of stand × density of the stand
Mass of stand = 249 cm³ × 85 85 g/cm³
Mass of stand = 21165 gm
Hence, the mass of the stand will be 21165 g
To learn more about the mass refer to the link;
https://brainly.com/question/13073862
#SPJ1
Will mark brainliest! No links!!!
Solve for X.
A) 1.6
B) 3.6
C) 4.6
D) 4.8
Let g(x) = ⌊ x ⌋. Find
a) g−1({0}).
b) g−1({−1, 0, 1}).
c) g−1({x | 0 < x < 1}).
a) g^(-1)({0}) = [0, 1)
b) g^(-1)({-1, 0, 1}) = (-1, 0) ∪ [0, 1) ∪ [1, 2)
c) g^(-1)({x | 0 < x < 1}) = (0, 1).
the inverse of g(x) = ⌊x⌋ for the set {x | 0 < x < 1} is g^(-1)({x | 0 < x < 1}) = (0, 1).
a) The inverse of g(x) = ⌊x⌋ is the set of values x for which ⌊x⌋ = 0. Since the greatest integer less than or equal to 0 is 0 itself, the inverse of g(x) = ⌊x⌋ for the set {0} is g^(-1)({0}) = [0, 1).
b) To find the inverse of g(x) = ⌊x⌋ for the set {-1, 0, 1}, we need to determine the values of x for which ⌊x⌋ takes on these values. For ⌊x⌋ = -1, x must be in the range (-1, 0). For ⌊x⌋ = 0, x must be in the range [0, 1). For ⌊x⌋ = 1, x must be in the range [1, 2). Therefore, the inverse of g(x) = ⌊x⌋ for the set {-1, 0, 1} is g^(-1)({-1, 0, 1}) = (-1, 0) ∪ [0, 1) ∪ [1, 2).
c) The inverse of g(x) = ⌊x⌋ for the set {x | 0 < x < 1} can be found by determining the values of x that satisfy this condition. Since g(x) rounds down to the nearest integer, the values of x for which 0 < x < 1 are in the interval (0, 1). Therefore, the inverse of g(x) = ⌊x⌋ for the set {x | 0 < x < 1} is g^(-1)({x | 0 < x < 1}) = (0, 1).
Visit to know more about Inverse:-
brainly.com/question/11735394
#SPJ11
wats the answer to this
The side of a triangle would be x = 7.
What are the properties of similar triangle?Similar triangles are triangles that have the same shape, but their sizes may vary. All equilateral triangles, squares οf any side lengths are examples οf similar οbjects.
In οther wοrds, if twο triangles are similar, then their cοrrespοnding angles are cοngruent and cοrrespοnding sides are in equal prοpοrtiοn. We denοte the similarity οf triangles here by ‘~’ symbοl.
What characteristics do similar triangles have. Property 1: Two triangles are comparable if their corresponding sides are within the same ratio and their corresponding angles are equal (or proportion).
Using similar triangle properties,
\(\frac{4}{x} =\frac{7}{10.5}\\\\4*10.5=7x\\\\42=7x\\\\x=7\)
Therefore, The side of a triangle would be 7.
To know more about properties of similar triangle visit,
https://brainly.com/question/30284173
#SPJ1
Tim and his family are going to the ballgame. The ball park is 90 miles away. If Tim drives at a constant rate of 60 mph, how long will it take to get to the ball park?
A. 1 hr.
B. 1.5 hr.
C. 2.5 hr.
D. 3.0 hr.
ANSWER IS 1.5 hrs!!!!
Answer:
yeah B
Step-by-step explanation:
yellowstone national park is a popular field trip destination. this year the senior class at high school a and the senior class at high school b both planned trips there. the senior class at high school a rented and filled 14 vans and 11 buses with 531 students. high school b rented and filled 7 vans and 7 buses with 315 students. every van had the same number of students in it as did the buses. how many students can a van carry? how many students can a bus carry?
The van contains 12 students and the bus contain 33 students.
The given information is:
The senior class at the high school rented and filled 14 vans and 11 buses with 531 students.
For this, we have to convert it into an equation:
14v+11b=531---------(1)
A High school b rented and filled 7 vans and 7 buses with 315 students.
For this, we have to convert it into an equation:
7v+7b=315----------(2)
To, find the number of students in the van and bus we have to solve two equations :
14v+11b=531
7v+7b=315*2
---------------------
14v+11b=531
14v+14b=630
----------------
-3b=-99
b=33
The total number of students on the bus is 33 members.
Now substitute the b value in any equation, and substitute in equation(2) we get the v value:
7v+7(33)=315
7v+231=315
7v=84
v=12
The total number of students in the van is 12 members.
To learn more about Quadratic equations:
https://brainly.com/question/24334139
#SPJ4
Function 1 is defined by the equation y = \(\frac{5}{4}\)r - 1.
Function 2 is defined by line p, shown on the graph.
Which function has a greater slope.
Function 1 has a greater slope than Function 2, and the answer is Function 1.
Function 1 is defined by the equation y = \(\frac{5}{4}r - 1\).
Function 2 is defined by line p, which is shown on the graph.
The problem asks which function has a greater slope.
The slope of a line is calculated by the ratio of the difference between the vertical axis values and the difference between the horizontal axis values.
This is shown in the formula:
slope = rise/run.
Here, rise refers to the vertical difference and run refers to the horizontal difference.
This means that the slope of a line measures how steeply the line is increasing or decreasing.
Function 1: y = \(\frac{5}{4}r - 1\)
Here, the equation of Function 1 is given as y = \(\frac{5}{4}\)r - 1.
From this equation, we can see that the slope of Function 1 is equal to \(\frac{5}{4}\).
Therefore, the slope of Function 1 is 1.25.Function 2: Line pNext, we need to determine the slope of line p, which represents Function 2.
To do this, we can use two points on the line.
From the graph, we can see that the line passes through the point (0, -2) and the point (4, 1).
The rise of this line is equal to 1 - (-2) = 3, while the run is equal to 4 - 0 = 4.
Thus, the slope of line p is equal to 3/4.
Therefore, the slope of Function 2 is 0.75.
Comparing the slopes, we can see that Function 1 has a greater slope than Function 2.
Specifically, the slope of Function 1 is 1.25, while the slope of Function 2 is 0.75.
For more related questions on slope:
https://brainly.com/question/3605446
#SPJ8
Justin wraps a gift box in the shape of a right rectangular prism. The figure below shows a net for the gift box.
Justin wants 654 cm² wrapping paper for wrap the gift.
Given that;
Justin wraps a gift box in the shape of a right rectangular prism.
Now, We get;
According to the wrapping paper, we can get cuboid,
The surface area is,
= 2 [ (length x width ) + width x height + height x length]
= 2 [ 15 x 8 + 8 x 9 + 9 x 15 ]
= 2 [120 + 72 + 135]
= 654 cm²
Thus, Justin wants 654 cm² wrapping paper for wrap the gift.
Learn more about the cuboid visit:
https://brainly.com/question/26403859
#SPJ1
Mrs. Peterson claims to produce random numbers from 1 to 5 (inclusive) on her calculator, but you've been keeping track. In the past 80 selections, the number "five" has come up only 8 times. You suspect that the calculator is producing fewer fives than it should. Let p = the true long-run proportion of five's produced by the calculator. What is the approximate P-value for this test? (a) -2.24 (b) -2.98 (c) 0.0028 (d) 0.0127 (e) 0.0250
The approximate P-value for this test is D. 0.01267.
How to calculate the p value?From the information, Mrs. Peterson claims to produce random numbers from 1 to 5 (inclusive) on her calculator, but you've been keeping track. In the past 80 selections, the number "five" has come up only 8 times.
The p(cap) will be:
= 8 / 80
= 0.1
The z score will be:
= (0.1 - 0.2) / (✓0.2(0.8)/80
= -0.1 / ✓0.0019
= -2.236
= -2.24
By using the distribution table after getting the z score, the p value is 0.01267.
Learn more about p value on:
brainly.com/question/4621112
#SPJ1
Alex bar and Carl are brothers Alex is the oldest and Carl is the youngest the some of the ages of the three brothers is 42 Alex his age is three more than twice Carl's age the difference between Barts in Carl's ages is seven years how old is each brother
Answer:
Alex = 19 years
Bart's = 15 years
Carl = 8 years
Step-by-step explanation:
Let us represent their ages as
Alex = x
Bart's = y
Carl = z
the sum of the ages of the three brothers is 42
x + y + z = 42
Alex his age is three more than twice Carl's age
x = 2z + 3
The difference between Barts in Carl's ages is seven years
y - z = 7
y = 7 + z
Hence: we Substitute
x + y + z = 42
2z + 3 + 7 + z + z = 42
Collect like terms
2z + z + z + 10 = 42
4z = 42 - 10
4z = 32
z = 32/4
z = 8 years
Hence, Carl = 8 years old
a) y = 7 + z
y = 7 + 8
y = 15 years.
Hence, Bart's is 15 years old
b)x = 2z + 3
x = 2(8) + 3
= 16 + 3
= 19 years
Therefore, Alex is 19 years old.
Help me tyyyyyyyyyyyyyyy
Answer:
option number 3
Step-by-step explanation:
Find the area of the shaded portion if we know the outer circle has a diameter of 4 m
and the inner circle has a diameter of 1.5 m.
6
9
O
12
15
12.6 m²
1.8 m²
18
43.2 m²
21
10.8 m?
Ma
The area of the shaded portion is 10.8 square meters.
To find the area of the shaded portion, we need to subtract the area of the inner circle from the area of the outer circle.
Step 1: Calculate the radius of the outer circle by dividing the diameter by 2.
Radius of the outer circle = Diameter / 2 = 4 m / 2 = 2 m
Step 2: Calculate the area of the outer circle using the formula:
Area of the outer circle = π * (radius^2) = π * (2^2) = 4π m²
Step 3: Calculate the radius of the inner circle using the same method:
Radius of the inner circle = Diameter / 2 = 1.5 m / 2 = 0.75 m
Step 4: Calculate the area of the inner circle:
Area of the inner circle = π * (radius^2) = π * (0.75^2) = 0.5625π m²
Step 5: Subtract the area of the inner circle from the area of the outer circle to get the shaded area:
Shaded area = Area of the outer circle - Area of the inner circle
= 4π m² - 0.5625π m²
= (4 - 0.5625)π m²
= 3.4375π m²
Step 6: Approximate the value of π as 3.14 and calculate the numerical value of the shaded area:
Shaded area ≈ 3.4375 * 3.14 m² ≈ 10.80375 m²
Therefore, the area of the shaded portion is approximately 10.8 square meters.
Learn more about area here:
https://brainly.com/question/11952845
#SPJ11
the spearman-brown formula is for which purpose? to make adjustments due to concerns that examinees might look up answers between taking the same test twice to make adjustments to reliability estimate due to concerns of shortness of the test (limited test items) to adjust correlations during factor analysis to assure accurate representation of all items to calculate the coefficient of determination (shared variance) when making adjustments to reliability estimates
The Spearman-Brown formula is used to adjust the reliability estimate of a test when concerns arise about the shortness of the test, i.e., the limited number of test items. Thus, B is correct.
The formula takes into account the number of items in the test and calculates the expected increase in reliability if the test were to be made longer. The formula is based on the assumption that adding more items to a test would increase its reliability, and thus provides a way to estimate the theoretical minimum length of a test required to achieve a desired level of reliability.
The formula is widely used in psychological testing and educational measurement to evaluate the reliability of test scores and to make decisions about the number of items needed in a test to achieve a desired level of reliability.
This question should be provided as:
The Spearman-Brown formula is for which purpose?
A) To make adjustments due to concerns that examinees might look up answers between taking the same test twice.B) To make adjustments to reliability estimate due to concerns of shortness of the test (limited test items).C) To adjust correlations during factor analysis to assure accurate representation of all items.D) To calculate the coefficient of determination (shared variance) when making adjustments to reliability estimatesE) none of the aboveLearn more about variables here: brainly.com/question/30113022
#SPJ4
hl meaning in geometry
Answer:
"HL" in geometry typically refers to "Hypotenuse-Leg". This term is often used when talking about right-angled triangles, where the hypotenuse is the longest side, opposite the right angle, and the legs are the two shorter sides adjacent to the right angle.
I need some help with these problems please thank you!
5) The equation of new parabola is,
⇒ y = -2(x + 5)² - 2.
6) The equation of new parabola is,
⇒ y = -(1/5)(x + 2)² + 5.
We have to given that,
The parabola y = x² undergoes the following transformations: reflected over the x-axis, translated 5 units left and 2 units down, and compressed vertically by a factor of 1/2
Hence, For the first question, reflecting the parabola y = x² over the x-axis will make the new equation,
⇒ y = -x².
Translating the resulting parabola 5 units left and 2 units down, we get,
⇒ y = -(x + 5)² - 2.
And, compressing the parabola vertically by a factor of 1/2, we get,
⇒ y = -2(x + 5)² - 2.
And, we know that the vertex form of a parabola is given by,
⇒ y = a(x - h)² + k,
where (h,k) is the vertex.
So, we can substitute the given vertex (-2,5) to get,
⇒ y = a(x + 2)² + 5.
We also know that the x-intercept occurs when y = 0, so we can substitute x = 3 and y = 0 to get,
⇒ 0 = a(3 + 2)² + 5.
Simplifying this equation, we get,
⇒ -5 = 25a,
⇒ a = -1/5.
Substituting value of a into the vertex form equation,
⇒ y = -(1/5)(x + 2)² + 5.
Learn more about parabola visit:
https://brainly.com/question/29635857
#SPJ1
in an attempt to gauge the opinion of a particular local, sensitive political topic, you collect data on the individuals in your neighborhood. among the variables collected are age, gender, and opinion on the topic. from the information collected, you calculate the average age to be 25 years old and the standard deviation of the ages to be zero years old. what must you conclude.
it would be beneficial to analyze other variables such as gender and opinion on the topic for a more comprehensive understanding of the local political opinion.
If the standard deviation of the ages is zero, then all individuals in the sample must have the same age of 25 years old. This means that the sample is not diverse and may not be representative of the entire neighborhood's opinion on the political topic. Therefore, conclusions drawn from this sample may not accurately reflect the opinions of the entire population. It is important to ensure that the sample is diverse and representative to make valid conclusions about a sensitive political topic.
Based on the data you collected, which includes age, gender, and opinion on the local sensitive political topic, you calculated the average age to be 25 years old and the standard deviation of the ages to be zero years old. This means that all individuals in your neighborhood are exactly 25 years old. Since there is no variation in age, it would be beneficial to analyze other variables such as gender and opinion on the topic for a more comprehensive understanding of the local political opinion.
learn more about opinion here: https://brainly.com/question/16263793
#SPJ11
e ohio lottery has a game called pick 4 where a player pays $1 and picks a four-digit number. if the four numbers come up in the order you picked, then you win $3900. a) write the probability distribution for a player's winnings. fill in the table below. for the computer to grade this one correctly make sure that your x values are from smallest to largest.
The probability of winning $3,899 is 0.0001, which is a very small probability, but still possible.
To write the probability distribution for a player's winnings in the Pick 4 game, we need to consider all the possible outcomes and their probabilities.
There are a total of 10,000 possible four-digit numbers that can be drawn in the game. Since the player has to match the numbers in the exact order, there is only one winning combination for each four-digit number. Therefore, the probability of winning is 1/10,000.
To calculate the player's winnings, we need to subtract the $1 cost of playing from the $3,900 prize. Thus, the player's net winnings can be calculated as follows:
Net Winnings = $3,900 - $1 = $3,899
The probability distribution for the player's winnings can be summarized in the following table:
| Winnings (x) | Probability (P) |
|--------------|-----------------|
| $0 | 0.9999 |
| $3,899 | 0.0001 |
Note that the table shows the possible winnings (x) in ascending order, as requested. The probability of winning $0 is 0.9999, which means that the player is most likely to lose their $1 bet.
Know more about probability here:
https://brainly.com/question/30034780
#SPJ11
What is another way to write 15.128?
Answer:
\(\frac{1891}{125}\)
Step-by-step explanation:
You can take any number, such as 15.128, and write a 1 as the denominator to make it a fraction and keep the same value,
15.128 / 1
we count the numbers after the decimal in 15.128, and multiply the numerator and denominator by 10 if it is 1 number, 100 if it is 2 numbers, 1000 if it is 3 numbers,
Therefore, we multiply the numerator and denominator by 1000 to get the following fraction:
15128 / 1000
Then, we need to divide the numerator and denominator by the greatest common divisor (GCD) to simplify the fraction.
The GCD of 15128 and 1000 is 8. When we divide the numerator and denominator by 8, we get the following:
\(\frac{1891}{125}\)